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Warm up: Probabilistic Computation

(Following the treatment of Arora and Barak.)

By analogy to probabilistic computation. ..

An example computation. To s
- . RSwap © ——
1. Initialize a two-bit o 2
register with input.
2. Swap the two bits with
probability 1/2. Input '+  Output
3. Output the register state. 00 00
01 01 or 10
10 10 or 01
11 11
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Dirac’s very useful
“ket” notation
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Warm up: Probabilistic Operations

We can use stochastic matrix to describe the action of the swap
gate on the register state.

0 0
1/2 1/2
1/2 1/2
0 0

o O o
o O O

5100} - [00) S10) o £ ((01) +[10))

SI01) o £(01) +110)  S|11) s [11)

= Computation is just a matrix-vector product.
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Quantum Computation

Register state: a vector in C2". (A “superposition”)
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Example: Quantum Circuit

o

I

L2

I3

Fy

Measure
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Observations about QC

1. Gates must represent unitary transformations (UUT = ),
so all computation must be reversible.

2. Amplitudes can be negative, unlike probabilities.
— This is the source of QC's apparent power.
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Useful Tool: Hadamard Gate

The Hadamard gate H is the quantum analogue of a classical

bit-flip:
1 (1 1
1= (1 —1>'

The operator H®™ applies H to each of n qubits.
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Useful Tool: Quantum Queries

Fact (Lecerf 1963, Bennett 1973)

If f:{0,1}" — {0,1} is computable with a T (n)-size classical
circuit, then there is a size-O(T'(n)) quantum circuit that maps:

Z)y) = |3y ® f(2)),

possibly using O(T'(n)) extra “work” bits.
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Fact (Lecerf 1963, Bennett 1973)

If f:{0,1}" — {0,1} is computable with a T (n)-size classical
circuit, then there is a size-O(T'(n)) quantum circuit that maps:

Z)y) = |3y ® f(2)),

possibly using O(T'(n)) extra “work” bits.

There is also a quantum circuit ()5 of similar size that takes:
) = (1)),

This essentially changes the sign of “good” xs in a superposition.
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Definition (Unstructured Search Problem)

Given oracle access to a function f : [N] — {0,1}, find a value
x € [N] such that f(z) = 1.

Many cool applications discussed in a moment.

A few interesting variants:
Unique solution, Exactly s solutions, Unknown # of solutions.

A classical algorithm for unstructured search that succeeds with
constant probability must make Q(N) queries.
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Theorem (Grover 1996)

There is a quantum algorithm for unstructured
search that makes O(v/N) quantum queries and
succeeds with probability at least 2/3.
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Grover's Algorithm

Let f:{0,1}" — {0,1} and let N = 2".
» Oracle: operator Qs that maps |z) > (—1)(®)|z).
» We can define an operator () that inverts the sign of |0™).

» H®" is the quantum n-bit flip operator.

The Algorithm.

1. Initialize an n-bit register to the state H®"|0").
2. Apply the following operator O(v/N) times:

G = —H®"QuH®"Q;.

3. Measure the state of the register and output it.
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Analysis of Grover's Algorithm

(Following expositions of Watrous and Jozsa)
Define:
1} (“awesome strings") with a = |A|, and
B = {z | f(z) = 0} ("bad strings"), with b = |B|.

Define:
4) = s Seealo), and
B)= L ¥,eplo).

After initialization, the register is in the uniform superposition over
strings:

HE"|0") = |h) = \FZ\x \fm \fua

Awesome
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Analysis of Grover's Algorithm

14) Where # = sin™! \/% ~ \/%
e
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Analysis of Grover's Algorithm

After t Grover iterations, the angle between the register state and
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Analysis of Grover's Algorithm

After t Grover iterations, the angle between the register state and
|B) is ~ 20t. We want the bad state |B) and the register state to
be orthogonal:

T
20t = —.
2

Num. Solutions Iterations

1 T.VN
m N
a Z'\/;
Unknown t«r{l,...,V/N}

One query per iteration = O(v/N) queries.
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Lower Bound

Definition (Decision Grover Problem)

Given oracle access to f : [N] — {0,1}, decide whether there exists
an x such that f(z) = 1 with probability better than 2/3.
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Lower Bound

Definition (Decision Grover Problem)

Given oracle access to f : [N] — {0,1}, decide whether there exists
an x such that f(z) = 1 with probability better than 2/3.

Theorem (Bennet, Bernstein, Brassard, Vazirani 1997)

For every quantum algorithm that makes o(v/N) queries to f, there

exists an f for which the algorithm fails to solve the Decision Grover
Problem.
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Breaking Block Ciphers

For this talk, a block cipher is an efficient deterministic function:

E:Kx{0,1}" — {0,1}".

A necessary (not sufficient) security property is that, for k &K, an
adversary given

E(k,“0"), E(k, "1"), E(k,"2")
cannot recover k faster than a brute-force search of the key-space.

Viewing E(-,-) as an oracle, an adversary making ¢ queries should
succeed with probability at most ~ ¢/|K]|.
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2. Define a function f.: K — {0,1} as:

fe(k) E {(E(k,"0"), B(k, “1"), E(k, "2")) = (co, 1, ¢2)}.
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Attacking AES-128
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Breaking Block Ciphers

Grover search recovers the key in time O(+/|K]).

Attack Using Grover

1. Attacker receives challenge ¢ = (co, c1, ¢2).
2. Define a function f.: K — {0,1} as:

felk) E{(E(k,"0"), E(k,“1"), E(k, “2")) = (co, ¢1, 2) }-
3. Run Grover's algorithm on f.

4. In O(4/|K|) iterations, Grover returns k w.h.p.

Attacking AES-128
Special-purpose classical attack:
Generic quantum attack: 264 111

2126'1 (Bogdanov et al. 2011)
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Hash Collisions

Let H be a random function.

Problem: Given oracle access to H : [2N] — [N], find distinct
elements x and 2’ such that H(x) = H(z2'). }

To succeed with constant probability (by the Birthday Bound), a
classical algorithm requires O(v/ N) queries.
[Compute H(0), H(1), H(2),... until you find a collision.]

Theorem (Brassard, Hgyer, Tapp 1997)

There is a quantum collision-finding algorithm that makes O(N'/?)
quantum queries and succeeds with constant probability.
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Quantum Collision Finding

ro [ H(ro) | )
Algorithm ldea B H(ry)
» Build a big table of ,': T2 H(rs)
random values and ST H(rs)
their hashes. ,j" | . . O(N1/3)
» Use Grover search to = : : F
quickly find a value ‘\\:\
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Quantum Collision Finding

Algorithm

1.

Sample O(N'/3) random integers r; € [2N], compute h; < H(r;),
and store each (r;, h;) in a table 7.

Define a function fr : 2N] — {0,1}:
h* < H(x)

fr(z) € { Look for a pair (r;, h;) € T with h; = h*
If such a pair exists and r; # x, return 1.

Use Grover search to find a “good” z.

Use the table to find the colliding 7, and output (x, 7).
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Sample O(N'/3) random integers r; € [2N], compute h; < H(r;),
and store each (r;, h;) in a table 7.

Define a function fr : [2N] — {0,1}:
h* < H(z)

fr(z) €< Look for a pair (r;, h;) € T with h; = h*
If such a pair exists and r; # x, return 1.

Use Grover search to find a “good” z.

Use the table to find the colliding 7, and output (x, 7).

Analysis
» Step 1 makes O(N'/3) queries to H.
» Step 3 is a Grover search over space of size 2N, with ~ N1/3

possible solutions.
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Quantum Collision Finding

Algorithm

1. Sample O(N'/3) random integers r; € [2N], compute h; « H(r;),
and store each (r;, h;) in a table 7.

2. Define a function fr : [2N] — {0,1}:
h* < H(z)

fr(z) = ¢ Look for a pair (r;, h;) € T with h; = h*
If such a pair exists and r; # x, return 1.

3. Use Grover search to find a “good” x.

4. Use the table to find the colliding 7, and output (z, 7).

Analysis
» Step 1 makes O(N'/3) queries to H.
» Step 3 is a Grover search over space of size 2N, with ~ N1/3

possible solutions. = O(y/N/N1/3) = O(N'/3) queries.
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Collision Finding in Practice

Is the collision-finding algorithm practical?
» The query complexity is O(N1/3). v

» What is the size of the quantum circuit?

0
0 o
Hen @ @ e 2l —
[
s
0

Each Grover iteration encodes a table of size ©(N'/3), so the G
circuit has ©(N'1/3) gates. (1)
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Collision Finding in Practice

» Mounting the attack requires a QC with ©(N'/3) qubits!
(In contrast, the cipher attack requires a QC with a few thousand qubits.)
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Collision Finding in Practice

» Mounting the attack requires a QC with ©(N'/3) qubits!
(In contrast, the cipher attack requires a QC with a few thousand qubits.)

» If you have ©(N'/?) qubits, you might as well use parallel
Grover search:

0 Xn %
0 H G G G é’ —
0 ®n %
0 H G G ... G é’
0 @
Rn
9 H a a @ S
9 H®n @ @ @ g
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Collision Finding in Practice

Parallel Grover (Grover and Rudolph 2003)

1. Pick an zo <= [N].
2. Define f: [2N] — {0,1} as:

fao(z) Z {H(z) = H(zo) and z # x¢}.

3. Divide search space into N1/ pieces.

4. Run Grover on each piece in parallel.
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Parallel Grover (Grover and Rudolph 2003)

1. Pick an zo <= [N].
2. Define f: [2N] — {0,1} as:

foo(@) = {H(z) = H(xo) and @ # zo}.

3. Divide search space into N1/ pieces.

4. Run Grover on each piece in parallel.

Analysis.
Each machine searches over a space of size O(N/N'/3).
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Collision Finding in Practice

Parallel Grover (Grover and Rudolph 2003)

1. Pick an zo <= [N].
2. Define f: [2N] — {0,1} as:

Fuo(@) £ {H(x) = H(xo) and @ # 20}.

3. Divide search space into N1/ pieces.

4. Run Grover on each piece in parallel.

Analysis.

Each machine searches over a space of size O(N/N'/3).

We expect one space to contain a colliding input.

Running time is O(V N2/3) = O(N'/3).
If you have a size-O(N'/3) classical computer, finding collisions
with the parallel rho method only takes time O(N/)!

(Van Oorschot and Wiener 1999) (Bernstein 2009) )
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Password Cracking

Modern OSes store passwords as H (salt, password), where:
— H is a “moderately hard” function, and
— salt is a random string.

User Password User Salt HashedPass
alice cardinal650 alice 0x0738 0x89d7fla
bob Stanford! # bob Oxaab3 0x1704193
carol CSRulez carol 0x9c3e 0x726ebd9

If someone steals your password file, they have to do some work
(“password cracking”) to recover the stored passwords.
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Password Cracking

Problem: Given oracle access to H : [N] — [N], a dictionary of
candidate passwords

D = {password, 12345, quwerty, ...} C [N],

and a target 7, find an « € D such that H(z) = 7.
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Password Cracking

Problem: Given oracle access to H : [N] — [N], a dictionary of
candidate passwords

D = {password, 12345, quwerty, ...} C [N],

and a target 7, find an « € D such that H(z) = 7.

Classical attack: ©(|D|) queries to H (to succeed w.p. 1/2)
Grover search: O(+/|D|) attack.”

Quantum computers essentially break
all password hashing functions.
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Quantum Password Cracking

1. Define a function fp:{1,2,...,|D|} — {0,1} as:

f2(3) «f | di < "ith entry in dictionary D"
1) = -
P return 7 = H(d;)

2. Run Grover search to find a “good” i.

Search will use O(+/|D]) queries to H and D.
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Quantum Password Cracking

1. Define a function fp:{1,2,...,|D|} — {0,1} as:

f2(3) «f | di < "ith entry in dictionary D"
1) = -
P return 7 = H(d;)

2. Run Grover search to find a “good” i.

Search will use O(+/|D]) queries to H and D.
» Cp = Cost of H query.
» Cp = Cost of D query.

Attack cost = (# iterations) - (Cost per iteration)
~1/|D|(Ca +Cp) (Could be ~ |D|log N)
~ |[D]*? + VD Cy

This often beats the classical |D| - Cy attack!
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Quantum Password Cracking

If we can represent the dictionary D with a small circuit, then the
quantum attack is devastating:

|D| - Ch decreases to ~/|D|-Cy.
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Quantum Password Cracking

If we can represent the dictionary D with a small circuit, then the
quantum attack is devastating:

|D| - Ch decreases to ~/|D|-Cy.

Using amplitude amplification (Brassard, Hgyer, Mosca, Tapp
2002), we can generalize the attack from

password dictionaries to password distributions.
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The End of Password Hashing?

Say that an attacker's budget allows for 224 hash computations. . .
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The End of Password Hashing?

Say that an attacker's budget allows for 224 hash computations. . .

Type Len Classical Quantum
Lower-case alpha 6 char 278 214

8 char 237 219

10 char 247 224
Alphanumeric 6 char 236 218

8 char 247 223

10 char 20 230
Printable ASCII 6 char 2% 220

8 char 22 226

10 char 266 233
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Conclusions
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than classical computers can.
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Conclusions

Quantum computers can solve black-box search problems faster
than classical computers can.

Future Directions

1. Find quantum collision-finding algorithms that beat the
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