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Quantum Computing and Crypto

Large-scale quantum computers could exist in our lifetimes.

Quantum computers can break today’s crypto primitives!

Examples Outcome
Public-key RSA, DH, ECDH Broken (Shor)

Modes of operation GCM, CBC-MAC Broken* (Simon)
Block ciphers AES, DES Attacks improve (Grover)

Hash functions SHA2 Attacks improve* (Grover)
Password hashing PBKDF2, scrypt Broken* (Grover)

You heard it
here first!

⇒ To design good post-quantum cryptosystems, we need to
understand post-quantum cryptanalysis.

2/40



Quantum Computing and Crypto

Large-scale quantum computers could exist in our lifetimes.

Quantum computers can break today’s crypto primitives!

Examples Outcome
Public-key RSA, DH, ECDH Broken (Shor)

Modes of operation GCM, CBC-MAC Broken* (Simon)
Block ciphers AES, DES Attacks improve (Grover)

Hash functions SHA2 Attacks improve* (Grover)
Password hashing PBKDF2, scrypt Broken* (Grover)

You heard it
here first!

⇒ To design good post-quantum cryptosystems, we need to
understand post-quantum cryptanalysis.

2/40



Quantum Computing and Crypto

Large-scale quantum computers could exist in our lifetimes.

Quantum computers can break today’s crypto primitives!

Examples Outcome
Public-key RSA, DH, ECDH Broken (Shor)

Modes of operation GCM, CBC-MAC Broken* (Simon)
Block ciphers AES, DES Attacks improve (Grover)

Hash functions SHA2 Attacks improve* (Grover)
Password hashing PBKDF2, scrypt Broken* (Grover)

You heard it
here first!

⇒ To design good post-quantum cryptosystems, we need to
understand post-quantum cryptanalysis.

2/40



Quantum Computing and Crypto

Large-scale quantum computers could exist in our lifetimes.

Quantum computers can break today’s crypto primitives!

Examples Outcome
Public-key RSA, DH, ECDH Broken (Shor)

Modes of operation GCM, CBC-MAC Broken* (Simon)

Block ciphers AES, DES Attacks improve (Grover)
Hash functions SHA2 Attacks improve* (Grover)

Password hashing PBKDF2, scrypt Broken* (Grover)

You heard it
here first!

⇒ To design good post-quantum cryptosystems, we need to
understand post-quantum cryptanalysis.

2/40



Quantum Computing and Crypto

Large-scale quantum computers could exist in our lifetimes.

Quantum computers can break today’s crypto primitives!

Examples Outcome
Public-key RSA, DH, ECDH Broken (Shor)

Modes of operation GCM, CBC-MAC Broken* (Simon)
Block ciphers AES, DES Attacks improve (Grover)

Hash functions SHA2 Attacks improve* (Grover)
Password hashing PBKDF2, scrypt Broken* (Grover)

You heard it
here first!

⇒ To design good post-quantum cryptosystems, we need to
understand post-quantum cryptanalysis.

2/40



Quantum Computing and Crypto

Large-scale quantum computers could exist in our lifetimes.

Quantum computers can break today’s crypto primitives!

Examples Outcome
Public-key RSA, DH, ECDH Broken (Shor)

Modes of operation GCM, CBC-MAC Broken* (Simon)
Block ciphers AES, DES Attacks improve (Grover)

Hash functions SHA2 Attacks improve* (Grover)

Password hashing PBKDF2, scrypt Broken* (Grover)

You heard it
here first!

⇒ To design good post-quantum cryptosystems, we need to
understand post-quantum cryptanalysis.

2/40



Quantum Computing and Crypto

Large-scale quantum computers could exist in our lifetimes.

Quantum computers can break today’s crypto primitives!

Examples Outcome
Public-key RSA, DH, ECDH Broken (Shor)

Modes of operation GCM, CBC-MAC Broken* (Simon)
Block ciphers AES, DES Attacks improve (Grover)

Hash functions SHA2 Attacks improve* (Grover)
Password hashing PBKDF2, scrypt Broken* (Grover)

You heard it
here first!

⇒ To design good post-quantum cryptosystems, we need to
understand post-quantum cryptanalysis.

2/40



Quantum Computing and Crypto

Large-scale quantum computers could exist in our lifetimes.

Quantum computers can break today’s crypto primitives!

Examples Outcome
Public-key RSA, DH, ECDH Broken (Shor)

Modes of operation GCM, CBC-MAC Broken* (Simon)
Block ciphers AES, DES Attacks improve (Grover)

Hash functions SHA2 Attacks improve* (Grover)
Password hashing PBKDF2, scrypt Broken* (Grover)

You heard it
here first!

⇒ To design good post-quantum cryptosystems, we need to
understand post-quantum cryptanalysis.

2/40



Quantum Computing and Crypto

Large-scale quantum computers could exist in our lifetimes.

Quantum computers can break today’s crypto primitives!

Examples Outcome
Public-key RSA, DH, ECDH Broken (Shor)

Modes of operation GCM, CBC-MAC Broken* (Simon)
Block ciphers AES, DES Attacks improve (Grover)

Hash functions SHA2 Attacks improve* (Grover)
Password hashing PBKDF2, scrypt Broken* (Grover)

You heard it
here first!

Th
is t

alk

⇒ To design good post-quantum cryptosystems, we need to
understand post-quantum cryptanalysis.

2/40



Quantum Computing and Crypto

Large-scale quantum computers could exist in our lifetimes.

Quantum computers can break today’s crypto primitives!

Examples Outcome
Public-key RSA, DH, ECDH Broken (Shor)

Modes of operation GCM, CBC-MAC Broken* (Simon)
Block ciphers AES, DES Attacks improve (Grover)

Hash functions SHA2 Attacks improve* (Grover)
Password hashing PBKDF2, scrypt Broken* (Grover)

You heard it
here first!

⇒ To design good post-quantum cryptosystems, we need to
understand post-quantum cryptanalysis.

2/40



Quantum Computing and Crypto

Large-scale quantum computers could exist in our lifetimes.

Quantum computers can break today’s crypto primitives!

Examples Outcome
Public-key RSA, DH, ECDH Broken (Shor)

Modes of operation GCM, CBC-MAC Broken* (Simon)
Block ciphers AES, DES Attacks improve (Grover)

Hash functions SHA2 Attacks improve* (Grover)
Password hashing PBKDF2, scrypt Broken* (Grover)

You heard it
here first!

⇒ To design good post-quantum cryptosystems, we need to
understand post-quantum cryptanalysis.

2/40



Overview

Motivation

Background
Analogy: Probabilistic Computation
Quantum Computation
Useful Tools

Grover’s Algorithm

Applications

Conclusion



Warm up: Probabilistic Computation
(Following the treatment of Arora and Barak.)
By analogy to probabilistic computation. . .

An example computation.
1. Initialize a two-bit

register with input.
2. Swap the two bits with

probability 1/2.
3. Output the register state.

x1

x0

RSwap

M
ea
su
re

Input 7→ Output
00 00
01 01 or 10
10 10 or 01
11 11
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Warm up: State of Probabilistic Machine

I We can describe the distribution over
register states (00, 01, 10, 11) with a
vector in R4.

I Reading the contents of the register
gives a sample from this distribution.

R4 3


α00
α01
α10
α11


← Prob. of “00”
← Prob. of “01”
← Prob. of “10”
← Prob. of “11”

Every possible state is a linear combination of basis states:

|00〉 =


1
0
0
0

 , |01〉 =


0
1
0
0

 , |10〉 =


0
0
1
0

 , |11〉 =


0
0
0
1



N.B. |0〉|1〉 = |01〉.

Dirac’s very useful
“ket” notation
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Warm up: Probabilistic Operations
We can use stochastic matrix to describe the action of the swap
gate on the register state.

S =


1 0 0 0
0 1/2 1/2 0
0 1/2 1/2 0
0 0 0 1



S|00〉 7→ |00〉 S|10〉 7→ 1
2(|01〉+ |10〉)

S|01〉 7→ 1
2(|01〉+ |10〉) S|11〉 7→ |11〉

⇒ Computation is just a matrix-vector product.

6/40
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Probabilistic Computation

Register state: a vector in R2n .

Probabilistic Computation

1. Initialize the register to |x〉, on input x ∈ {0, 1}n.

2. Run the computation by computing a matrix-vector product
FT · · ·F3F2F1|x〉 (i.e., apply the circuit to the register).

3. Measure the register.

If the output of the computation is
∑

y αy|y〉, we will measure y with
probability αy.

We require that Fis:
I come from a fixed set of universal gates (AND, OR, etc.),
I preserve the L1 norm (i.e., are stochastic matrices).

Probabilities sum
to one.
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Quantum Computation
Register state: a vector in C2n . (A “superposition”)

Quantum Computation

1. Initialize the register to |x〉, on input x ∈ {0, 1}n.

2. Run the computation by computing a matrix-vector product
FT · · ·F3F2F1|x〉 (i.e., apply the circuit to the register).

3. Measure the register.

If the output of the computation is
∑

y αy|y〉, we will measure y with
probability |αy|2, where αy is an “amplitude.”

We require that the Fis:
I come from a fixed set of universal gates (H, T , etc.),
I preserve the L2 norm (i.e., are unitary matrices).
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Example: Quantum Circuit

x3

x2

x1

x0

F1

F2

F3

M
ea
su
re

9/40



Observations about QC

1. Gates must represent unitary transformations (UU † = I),
so all computation must be reversible.

2. Amplitudes can be negative, unlike probabilities.
– This is the source of QC’s apparent power.
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Useful Tool: Hadamard Gate

Definition
The Hadamard gate H is the quantum analogue of a classical
bit-flip:

H = 1√
2

(
1 1
1 −1

)
.

H|0〉 7→ |0〉+|1〉√
2

The operator H⊗n applies H to each of n qubits.
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Useful Tool: Quantum Queries

Fact (Lecerf 1963, Bennett 1973)
If f : {0, 1}n → {0, 1} is computable with a T (n)-size classical
circuit, then there is a size-O(T (n)) quantum circuit that maps:

|x〉|y〉 7→ |x〉|y ⊕ f(x)〉,

possibly using O(T (n)) extra “work” bits.
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Can make quantum queries
to a classical function!
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possibly using O(T (n)) extra “work” bits.

There is also a quantum circuit Qf of similar size that takes:

|x〉 7→ (−1)f(x)|x〉.

This essentially changes the sign of “good” xs in a superposition.

12/40
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Definition (Unstructured Search Problem)
Given oracle access to a function f : [N ]→ {0, 1}, find a value
x ∈ [N ] such that f(x) = 1.

Many cool applications discussed in a moment.

A few interesting variants:
Unique solution, Exactly s solutions, Unknown # of solutions.

Fact
A classical algorithm for unstructured search that succeeds with
constant probability must make Ω(N) queries.
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Theorem (Grover 1996)

There is a quantum algorithm for unstructured
search that makes O(

√
N) quantum queries and

succeeds with probability at least 2/3.
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Grover’s Algorithm

Let f : {0, 1}n → {0, 1} and let N = 2n.

I Oracle: operator Qf that maps |x〉 7→ (−1)f(x)|x〉.
I We can define an operator Q0 that inverts the sign of |0n〉.
I H⊗n is the quantum n-bit flip operator.

The Algorithm.
1. Initialize an n-bit register to the state H⊗n|0n〉.
2. Apply the following operator O(

√
N) times:

G = −H⊗nQ0H
⊗nQf .

3. Measure the state of the register and output it.
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Analysis of Grover’s Algorithm
(Following expositions of Watrous and Jozsa)
Define:
A = {x | f(x) = 1} (“awesome strings”) with a = |A|, and

B = {x | f(x) = 0} (“bad strings”), with b = |B|.

Define:
|A〉 = 1√

a

∑
x∈A |x〉, and

|B〉 = 1√
b

∑
x∈B |x〉.

Orthogonal unit
vectors

After initialization, the register is in the uniform superposition over
strings:

H⊗n|0n〉 = |h〉 = 1√
N

∑
x

|x〉 =
√
a

N
|A〉︸ ︷︷ ︸

Awesome

+

√
b

N
|B〉︸ ︷︷ ︸

Bad
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Analysis of Grover’s Algorithm
G = −H⊗nQ0H

⊗nQf

Claim: H⊗nQ0H
⊗n reflects

over plane orthogonal to |h〉.

|B〉

|A〉

|h〉
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Analysis of Grover’s Algorithm
G = −H⊗nQ0H

⊗nQf

|B〉

|A〉

|h〉
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Analysis of Grover’s Algorithm
G = −H⊗nQ0H

⊗nQf

|B〉

|A〉

|h〉

And so on. . .
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Analysis of Grover’s Algorithm

G = −H⊗nQ0H
⊗nQf

|B〉

|A〉

|h〉

θ

2θ

Where θ = sin−1
√

a
N ≈

√
a
N

19/40



Analysis of Grover’s Algorithm

After t Grover iterations, the angle between the register state and
|B〉 is ≈ 2θt. We want the bad state |B〉 and the register state to
be orthogonal:

2θt = π

2 .

Num. Solutions Iterations
1 π

4 ·
√
N

a π
4 ·
√

N
a

Unknown t←R {1, . . . ,
√
N}

One query per iteration ⇒ O(
√
N) queries.
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Lower Bound

Definition (Decision Grover Problem)
Given oracle access to f : [N ]→ {0, 1}, decide whether there exists
an x such that f(x) = 1 with probability better than 2/3.

Theorem (Bennet, Bernstein, Brassard, Vazirani 1997)

For every quantum algorithm that makes o(
√
N) queries to f , there

exists an f for which the algorithm fails to solve the Decision Grover
Problem.
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Thm. For every quantum algorithm that makes o(
√
N) queries to

f , there exists an f for which the algorithm fails to solve the DGP.

22/40



Thm. For every quantum algorithm that makes o(
√
N) queries to

f , there exists an f for which the algorithm fails to solve the DGP.

Proof Idea. Fix a T -query quantum algorithm:

QfUTQf · · ·QfU3QfU2QfU1|0n〉

If f is zero everywhere, Qf = I.

Interpolate between the non-zero case and the all-zero case. . .

|φx∗〉 = QfUTQf · · ·QfU3QfU2QfU1|0n〉
QfUTQf · · ·QfU3QfU2U1|0n〉
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QfUTQf · · ·U3U2U1|0n〉
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|φ〉 = UT · · ·U3U2U1|0n〉

22/40



Thm. For every quantum algorithm that makes o(
√
N) queries to

f , there exists an f for which the algorithm fails to solve the DGP.

Proof Idea. Fix a T -query quantum algorithm:

QfUTQf · · ·QfU3QfU2QfU1|0n〉

If f is zero everywhere, Qf = I.

Interpolate between the non-zero case and the all-zero case. . .

|φx∗〉 = QfUTQf · · ·QfU3QfU2QfU1|0n〉
QfUTQf · · ·QfU3QfU2U1|0n〉
QfUTQf · · ·QfU3U2U1|0n〉
QfUTQf · · ·U3U2U1|0n〉
...

|φ〉 = UT · · ·U3U2U1|0n〉

22/40



Thm. For every quantum algorithm that makes o(
√
N) queries to

f , there exists an f for which the algorithm fails to solve the DGP.

Proof Idea. Fix a T -query quantum algorithm:

QfUTQf · · ·QfU3QfU2QfU1|0n〉

If f is zero everywhere, Qf = I.

Interpolate between the non-zero case and the all-zero case. . .

|φx∗〉 = QfUTQf · · ·QfU3QfU2QfU1|0n〉
QfUTQf · · ·QfU3QfU2U1|0n〉
QfUTQf · · ·QfU3U2U1|0n〉
QfUTQf · · ·U3U2U1|0n〉
...

|φ〉 = UT · · ·U3U2U1|0n〉

22/40



Thm. For every quantum algorithm that makes o(
√
N) queries to

f , there exists an f for which the algorithm fails to solve the DGP.

Proof Idea. Fix a T -query quantum algorithm:

QfUTQf · · ·QfU3QfU2QfU1|0n〉

If f is zero everywhere, Qf = I.

Interpolate between the non-zero case and the all-zero case. . .

|φx∗〉 = QfUTQf · · ·QfU3QfU2QfU1|0n〉

QfUTQf · · ·QfU3QfU2U1|0n〉
QfUTQf · · ·QfU3U2U1|0n〉
QfUTQf · · ·U3U2U1|0n〉
...

|φ〉 = UT · · ·U3U2U1|0n〉

22/40



Thm. For every quantum algorithm that makes o(
√
N) queries to

f , there exists an f for which the algorithm fails to solve the DGP.

Proof Idea. Fix a T -query quantum algorithm:

QfUTQf · · ·QfU3QfU2QfU1|0n〉

If f is zero everywhere, Qf = I.

Interpolate between the non-zero case and the all-zero case. . .

|φx∗〉 = QfUTQf · · ·QfU3QfU2QfU1|0n〉
QfUTQf · · ·QfU3QfU2U1|0n〉

QfUTQf · · ·QfU3U2U1|0n〉
QfUTQf · · ·U3U2U1|0n〉
...

|φ〉 = UT · · ·U3U2U1|0n〉

22/40



Thm. For every quantum algorithm that makes o(
√
N) queries to

f , there exists an f for which the algorithm fails to solve the DGP.

Proof Idea. Fix a T -query quantum algorithm:

QfUTQf · · ·QfU3QfU2QfU1|0n〉

If f is zero everywhere, Qf = I.

Interpolate between the non-zero case and the all-zero case. . .

|φx∗〉 = QfUTQf · · ·QfU3QfU2QfU1|0n〉
QfUTQf · · ·QfU3QfU2U1|0n〉
QfUTQf · · ·QfU3U2U1|0n〉

QfUTQf · · ·U3U2U1|0n〉
...

|φ〉 = UT · · ·U3U2U1|0n〉

22/40



Thm. For every quantum algorithm that makes o(
√
N) queries to

f , there exists an f for which the algorithm fails to solve the DGP.

Proof Idea. Fix a T -query quantum algorithm:

QfUTQf · · ·QfU3QfU2QfU1|0n〉

If f is zero everywhere, Qf = I.

Interpolate between the non-zero case and the all-zero case. . .

|φx∗〉 = QfUTQf · · ·QfU3QfU2QfU1|0n〉
QfUTQf · · ·QfU3QfU2U1|0n〉
QfUTQf · · ·QfU3U2U1|0n〉
QfUTQf · · ·U3U2U1|0n〉

...
|φ〉 = UT · · ·U3U2U1|0n〉

22/40



Thm. For every quantum algorithm that makes o(
√
N) queries to

f , there exists an f for which the algorithm fails to solve the DGP.

Proof Idea. Fix a T -query quantum algorithm:

QfUTQf · · ·QfU3QfU2QfU1|0n〉

If f is zero everywhere, Qf = I.

Interpolate between the non-zero case and the all-zero case. . .

|φx∗〉 = QfUTQf · · ·QfU3QfU2QfU1|0n〉
QfUTQf · · ·QfU3QfU2U1|0n〉
QfUTQf · · ·QfU3U2U1|0n〉
QfUTQf · · ·U3U2U1|0n〉
...

|φ〉 = UT · · ·U3U2U1|0n〉

22/40



Thm. For every quantum algorithm that makes o(
√
N) queries to

f , there exists an f for which the algorithm fails to solve the DGP.

Proof Idea. Fix a T -query quantum algorithm:

QfUTQf · · ·QfU3QfU2QfU1|0n〉

If f is zero everywhere, Qf = I.

Interpolate between the non-zero case and the all-zero case. . .

|φx∗〉 = QfUTQf · · ·QfU3QfU2QfU1|0n〉
QfUTQf · · ·QfU3QfU2U1|0n〉
QfUTQf · · ·QfU3U2U1|0n〉
QfUTQf · · ·U3U2U1|0n〉
...

|φ〉 = UT · · ·U3U2U1|0n〉
22/40



Proof Idea (cont’d).

∑
x

αx,t|x〉 = state before t-th query

x∗ = the “target” value

I With each query, the Euclidean distance between the two
states can grow by at most 2|αx∗,t|.

I To distinguish, the distance after T queries needs to be at least
a constant ε, so: ε ≤ 2

∑T
t=1 |αx∗,t|.

I To complete the proof, sum over all N possible x∗s:

εN ≤ 2
T∑
t=1

N∑
x∗=1
|αx∗,t| ≤

T∑
t=1

√
N

√√√√ N∑
x∗=1
|αx∗,t|2 ≤ 2T

√
N.

⇒ ε
2
√
N ≤ T
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εN ≤ 2
T∑
t=1

N∑
x∗=1
|αx∗,t| ≤
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√
N

√√√√ N∑
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√
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√
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Breaking Block Ciphers

For this talk, a block cipher is an efficient deterministic function:

E : K × {0, 1}n → {0, 1}n.

A necessary (not sufficient) security property is that, for k R← K, an
adversary given

E(k, “0”), E(k, “1”), E(k, “2”)

cannot recover k faster than a brute-force search of the key-space.

Viewing E(·, ·) as an oracle, an adversary making q queries should
succeed with probability at most ≈ q/|K|.
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Breaking Block Ciphers
Grover search recovers the key in time O(

√
|K|).

Attack Using Grover
1. Attacker receives challenge c = (c0, c1, c2).
2. Define a function fc : K → {0, 1} as:

fc(k) def=
{
(E(k, “0”), E(k, “1”), E(k, “2”)) = (c0, c1, c2)

}
.

3. Run Grover’s algorithm on fc.
4. In O(

√
|K|) iterations, Grover returns k w.h.p.

Attacking AES-128
Special-purpose classical attack: 2126.1 (Bogdanov et al. 2011)

Generic quantum attack: 264. !!!
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Hash Collisions

Let H be a random function.

Problem: Given oracle access to H : [2N ]→ [N ], find distinct
elements x and x′ such that H(x) = H(x′).

To succeed with constant probability (by the Birthday Bound), a
classical algorithm requires Θ(

√
N) queries.

[Compute H(0), H(1), H(2), . . . until you find a collision.]

Theorem (Brassard, Høyer, Tapp 1997)

There is a quantum collision-finding algorithm that makes O(N1/3)
quantum queries and succeeds with constant probability.
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Quantum Collision Finding

Algorithm Idea

I Build a big table of
random values and
their hashes.

I Use Grover search to
quickly find a value
that collides with one
in the table.

r0 H(r0)
r1 H(r1)
r2 H(r2)
r3 H(r3)
... ... O(N1/3)
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Quantum Collision Finding
Algorithm

1. Sample O(N1/3) random integers ri ∈ [2N ], compute hi ← H(ri),
and store each (ri, hi) in a table T .

2. Define a function fT : [2N ]→ {0, 1}:

fT (x) def=

 h∗ ← H(x)
Look for a pair (ri, hi) ∈ T with hi = h∗

If such a pair exists and ri 6= x, return 1.

3. Use Grover search to find a “good” x.

4. Use the table to find the colliding r, and output (x, r).

Analysis
I Step 1 makes O(N1/3) queries to H.
I Step 3 is a Grover search over space of size 2N , with ≈ N1/3

possible solutions. ⇒ O(
√
N/N1/3) = O(N1/3) queries.
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Collision Finding in Practice

Is the collision-finding algorithm practical?

I The query complexity is O(N1/3). X
I What is the size of the quantum circuit?

0

...

0

0

GGG GGG GGGH⊗n . . .

M
ea
su
re

Each Grover iteration encodes a table of size Θ(N1/3), so the G
circuit has Θ(N1/3) gates. (!)
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Collision Finding in Practice

I Mounting the attack requires a QC with Θ(N1/3) qubits!
(In contrast, the cipher attack requires a QC with a few thousand qubits.)

I If you have Θ(N1/3) qubits, you might as well use parallel
Grover search:

0
0 GGG GGG GGGH⊗n

. . .

M
ea
s

0
0 GGG GGG GGGH⊗n

. . .

M
ea
s

0
0 GGG GGG GGGH⊗n

. . . M
ea
s

0
0 GGG GGG GGGH⊗n

. . .

M
ea
s
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Collision Finding in Practice
Parallel Grover (Grover and Rudolph 2003)

1. Pick an x0
R← [N ].

2. Define f : [2N ]→ {0, 1} as:

fx0(x) def= {H(x) = H(x0) and x 6= x0}.

3. Divide search space into N1/3 pieces.
4. Run Grover on each piece in parallel.

Analysis.
Each machine searches over a space of size O(N/N1/3).
We expect one space to contain a colliding input.
Running time is O(

√
N2/3) = O(N1/3).

If you have a size-Θ(N1/3) classical computer, finding collisions
with the parallel rho method only takes time O(N1/6)!
(Van Oorschot and Wiener 1999) (Bernstein 2009)
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Password Cracking

Modern OSes store passwords as H(salt, password), where:
– H is a “moderately hard” function, and
– salt is a random string.

User Password
alice cardinal650
bob Stanford!
carol CSRulez

...

User Salt HashedPass
alice 0x0738 0x89d7f1a
bob 0xaab3 0x1704193
carol 0x9c3e 0x726ebd9

...

If someone steals your password file, they have to do some work
(“password cracking”) to recover the stored passwords.
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Password Cracking

Problem: Given oracle access to H : [N ]→ [N ], a dictionary of
candidate passwords

D = {password, 12345, qwerty, ...} ⊆ [N ],

and a target τ , find an x ∈ D such that H(x) = τ .

Classical attack: Θ(|D|) queries to H (to succeed w.p. 1/2)

Grover search: O(
√
|D|) attack.∗ (New?)

Quantum computers essentially break
all password hashing functions.

34/40



Password Cracking

Problem: Given oracle access to H : [N ]→ [N ], a dictionary of
candidate passwords

D = {password, 12345, qwerty, ...} ⊆ [N ],

and a target τ ,

Inverting a function
with hints.
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Quantum Password Cracking
1. Define a function fD : {1, 2, . . . , |D|} → {0, 1} as:

fD(i) def=
{
di ← “ith entry in dictionary D”
return τ ?= H(di)

2. Run Grover search to find a “good” i.

Search will use O(
√
|D|) queries to H and D.

I CH = Cost of H query.
I CD = Cost of D query.

Attack cost = (# iterations) · (Cost per iteration)

≈
√
|D|(CH + CD) (Could be ≈ |D| logN)

≈ |D|3/2 +
√
D · CH

This often beats the classical |D| · CH attack!
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Quantum Password Cracking

If we can represent the dictionary D with a small circuit, then the
quantum attack is devastating:

|D| · CH decreases to ≈
√
|D| · CH .

Using amplitude amplification (Brassard, Høyer, Mosca, Tapp
2002), we can generalize the attack from

password dictionaries to password distributions.
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The End of Password Hashing?

Say that an attacker’s budget allows for 224 hash computations. . .

Type Len Classical Quantum
Lower-case alpha 6 char 228 214

8 char 237 219

10 char 247 224

Alphanumeric 6 char 236 218

8 char 247 223

10 char 260 230

Printable ASCII 6 char 239 220

8 char 252 226

10 char 266 233
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Conclusions

Quantum computers can solve black-box search problems faster
than classical computers can.

Future Directions
1. Find quantum collision-finding algorithms that beat the

classical ones, in terms of qubit complexity. (Grover and Rudolph 2003)

I . . . or prove that none exist.

2. Cryptanalyze proposed post-quantum cryptosystems.
Switching from RSA → LWE doesn’t necessarily protect you.

3. Prove time-space lower bounds for quantum algorithms in the
random-oracle model.

Thank you!
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Analysis of Grover’s Algorithm

Claim
The operator R = H⊗nQ0H

⊗n reflects over the hyperplane
orthogonal to |h〉.

The Q0 operator flips the sign of |0n〉 in a superposition:

Q0 = I − 2|0n〉〈0n|.

Then R = H⊗nQ0H
⊗n = I − 2|h〉〈h|, so R takes:

|h〉 7→ −|h〉 and |h⊥〉 7→ |h⊥〉.

So, for any vector |v〉 = α|h〉+ β|h⊥〉, R maps:

α|h〉+ β|h⊥〉 7→ −α|h〉+ β|h⊥〉.
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