Grover Search and Its

Cryptographic Applications

Henry Corrigan-Gibbs Qualifying Exam Talk

21 November 2016

Large-scale quantum computers could exist in our lifetimes.

Large-scale quantum computers could exist in our lifetimes.

Large-scale quantum computers could exist in our lifetimes.

		Examples	Outcome	
F	ublic-key	RSA, DH, ECDH	Broken (Shor)	_

Large-scale quantum computers could exist in our lifetimes.

	Examples	Outcome
Public-key	RSA, DH, ECDH	Broken (Shor)
Modes of operation	GCM, CBC-MAC	Broken* (Simon)

Large-scale quantum computers could exist in our lifetimes.

	Examples	Outcome
Public-key	RSA, DH, ECDH	Broken (Shor)
Modes of operation	GCM, CBC-MAC	Broken* (Simon)
Block ciphers	AES, DES	Attacks improve (Grover)

Large-scale quantum computers could exist in our lifetimes.

	Examples	Outcome
Public-key	RSA, DH, ECDH	Broken (Shor)
Modes of operation	GCM, CBC-MAC	Broken* (Simon)
Block ciphers		Attacks improve (Grover)
Hash functions	SHA2	Attacks improve* (Grover)

Large-scale quantum computers could exist in our lifetimes.

	Examples	Outcome
Public-key	RSA, DH, ECDH	Broken (Shor)
Modes of operation	GCM, CBC-MAC	Broken* (Simon)
Block ciphers	AES, DES	Attacks improve (Grover)
Hash functions	SHA2	Attacks improve* (Grover)
Password hashing	PBKDF2, scrypt	Broken* (Grover)

Large-scale quantum computers could exist in our lifetimes.

Quantum computers can break today's crypto primitives!

	Examples	Outcome
Public-key	RSA, DH, ECDH	Broken (Shor)
Modes of operation	GCM, CBC-MAC	Broken* (Simon)
Block ciphers	AES, DES	Attacks improve (Grover)
Hash functions	SHA2	Attacks improve* (Grover)
Password hashing	PBKDF2, scrypt	Broken* (Grover)

Large-scale quantum computers could exist in our lifetimes.

Quantum computers can break today's crypto primitives!

	Examples	Outcome
Public-key	RSA, DH, ECDH	Broken (Shor)
Modes of operation	GCM, CBC-MAC	Broken* (Simon)
Block ciphers	AES, DES	Attacks improve (Grover)
Hash functions	SHA2	Attacks improve* (Grover)
Password hashing	PBKDF2, scrypt	Broken* (Grover)

Large-scale quantum computers could exist in our lifetimes.

Quantum computers can break today's crypto primitives!

	Examples	Outcome
Public-key	RSA, DH, ECDH	Broken (Shor)
Modes of operation	GCM, CBC-MAC	Broken* (Simor You heard it
Block ciphers	AES, DES	Attacks impro here first!
Hash functions	SHA2	Attacks improve
Password hashing	PBKDF2, scrypt	Broken* (Grover)

Large-scale quantum computers could exist in our lifetimes.

Quantum computers can break today's crypto primitives!

	Examples	Outcome
Public-key	RSA, DH, ECDH	Broken (Shor)
Modes of operation	GCM, CBC-MAC	Broken* (Simon)
Block ciphers	AES, DES	Attacks improve (Grover)
Hash functions	SHA2	Attacks improve* (Grover)
Password hashing	PBKDF2, scrypt	Broken* (Grover)

Overview

Motivation

Background

Analogy: Probabilistic Computation

Quantum Computation

Useful Tools

Grover's Algorithm

Applications

Conclusion

(Following the treatment of Arora and Barak.)
By analogy to probabilistic computation. . .

(Following the treatment of Arora and Barak.)
By analogy to probabilistic computation. . .

An example computation.

- 1. Initialize a two-bit register with input.
- 2. Swap the two bits with probability 1/2.
- 3. Output the register state.

(Following the treatment of Arora and Barak.)

By analogy to probabilistic computation...

An example computation.

- 1. Initialize a two-bit register with input.
- 2. Swap the two bits with probability 1/2.
- 3. Output the register state.

(Following the treatment of Arora and Barak.)

By analogy to probabilistic computation...

An example computation.

- 1. Initialize a two-bit register with input.
- 2. Swap the two bits with probability 1/2.
- 3. Output the register state.

Input	\mapsto	Output
00		00
01		01 or 10
10		10 or 01
11		11

▶ We can describe the distribution over register states (00, 01, 10, 11) with a vector in \mathbb{R}^4 .

- ▶ We can describe the distribution over register states (00, 01, 10, 11) with a vector in \mathbb{R}^4 .
- ► Reading the contents of the register gives a sample from this distribution.

- ▶ We can describe the distribution over register states (00, 01, 10, 11) with a vector in \mathbb{R}^4 .
- ► Reading the contents of the register gives a sample from this distribution.

$$\mathbb{R}^4\ni \begin{pmatrix} \alpha_{00}\\ \alpha_{01}\\ \alpha_{10}\\ \alpha_{11} \end{pmatrix} \begin{array}{l} \leftarrow \text{Prob. of "00"}\\ \leftarrow \text{Prob. of "01"}\\ \leftarrow \text{Prob. of "10"}\\ \leftarrow \text{Prob. of "11"} \\ \end{array}$$

- ▶ We can describe the distribution over register states (00, 01, 10, 11) with a vector in \mathbb{R}^4 .
- ► Reading the contents of the register gives a sample from this distribution.

$$\mathbb{R}^4\ni \begin{pmatrix} \alpha_{00}\\ \alpha_{01}\\ \alpha_{10}\\ \alpha_{11} \end{pmatrix} \begin{array}{l} \leftarrow \text{Prob. of "00"}\\ \leftarrow \text{Prob. of "01"}\\ \leftarrow \text{Prob. of "10"}\\ \leftarrow \text{Prob. of "11"} \end{array}$$

Every possible state is a linear combination of basis states:

$$|00\rangle = \begin{pmatrix} \mathbf{1} \\ 0 \\ 0 \\ 0 \end{pmatrix}, \quad |01\rangle = \begin{pmatrix} 0 \\ \mathbf{1} \\ 0 \\ 0 \end{pmatrix}, \quad |10\rangle = \begin{pmatrix} 0 \\ 0 \\ \mathbf{1} \\ 0 \end{pmatrix}, \quad |11\rangle = \begin{pmatrix} 0 \\ 0 \\ 0 \\ \mathbf{1} \end{pmatrix}$$

N.B. $|0\rangle|1\rangle = |01\rangle$.

- ▶ We can describe the distribution over register states (00, 01, 10, 11) with a vector in \mathbb{R}^4 .
- ► Reading the contents of the register gives a sample from this distribution.

$$\mathbb{R}^4 \ni \begin{pmatrix} \alpha_{00} \\ \alpha_{01} \\ \alpha_{10} \\ \alpha_{11} \end{pmatrix} \begin{array}{l} \leftarrow \text{Prob. of "00"} \\ \leftarrow \text{Prob. of "01"} \\ \leftarrow \text{Prob. of "10"} \\ \leftarrow \text{Prob. of "11"} \\ \end{array}$$

N.B. $|0\rangle|1\rangle = |01\rangle$.

- ▶ We can describe the distribution over register states (00, 01, 10, 11) with a vector in \mathbb{R}^4 .
- ► Reading the contents of the register gives a sample from this distribution.

$$\mathbb{R}^4\ni \begin{pmatrix} \alpha_{00}\\ \alpha_{01}\\ \alpha_{10}\\ \alpha_{11} \end{pmatrix} \begin{array}{l} \leftarrow \text{Prob. of "00"}\\ \leftarrow \text{Prob. of "01"}\\ \leftarrow \text{Prob. of "10"}\\ \leftarrow \text{Prob. of "11"} \end{array}$$

Every possible state is a linear combination of basis states:

$$|00\rangle = \begin{pmatrix} \mathbf{1} \\ 0 \\ 0 \\ 0 \end{pmatrix}, \quad |01\rangle = \begin{pmatrix} 0 \\ \mathbf{1} \\ 0 \\ 0 \end{pmatrix}, \quad |10\rangle = \begin{pmatrix} 0 \\ 0 \\ \mathbf{1} \\ 0 \end{pmatrix}, \quad |11\rangle = \begin{pmatrix} 0 \\ 0 \\ 0 \\ \mathbf{1} \end{pmatrix}$$

N.B. $|0\rangle|1\rangle = |01\rangle$.

We can use *stochastic matrix* to describe the action of the swap gate on the register state.

We can use *stochastic matrix* to describe the action of the swap gate on the register state.

$$S = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1/2 & 1/2 & 0 \\ 0 & 1/2 & 1/2 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

We can use *stochastic matrix* to describe the action of the swap gate on the register state.

$$S = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1/2 & 1/2 & 0 \\ 0 & 1/2 & 1/2 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$S|\mathbf{00}\rangle \mapsto |\mathbf{00}\rangle$$
 $S|\mathbf{10}\rangle \mapsto \frac{1}{2}(|\mathbf{01}\rangle + |\mathbf{10}\rangle)$ $S|\mathbf{01}\rangle \mapsto \frac{1}{2}(|\mathbf{01}\rangle + |\mathbf{10}\rangle)$ $S|\mathbf{11}\rangle \mapsto |\mathbf{11}\rangle$

We can use *stochastic matrix* to describe the action of the swap gate on the register state.

$$S = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1/2 & 1/2 & 0 \\ 0 & 1/2 & 1/2 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$S|\mathbf{00}\rangle \mapsto |\mathbf{00}\rangle$$
 $S|\mathbf{10}\rangle \mapsto \frac{1}{2}(|\mathbf{01}\rangle + |\mathbf{10}\rangle)$ $S|\mathbf{01}\rangle \mapsto \frac{1}{2}(|\mathbf{01}\rangle + |\mathbf{10}\rangle)$ $S|\mathbf{11}\rangle \mapsto |\mathbf{11}\rangle$

⇒ Computation is just a matrix-vector product.

Register state: a vector in \mathbb{R}^{2^n} .

Register state: a vector in \mathbb{R}^{2^n} .

Probabilistic Computation

1. Initialize the register to $|x\rangle$, on input $x \in \{0,1\}^n$.

Register state: a vector in \mathbb{R}^{2^n} .

Probabilistic Computation

- 1. Initialize the register to $|x\rangle$, on input $x \in \{0,1\}^n$.
- 2. Run the computation by computing a matrix-vector product $F_T \cdots F_3 F_2 F_1 |x\rangle$ (i.e., apply the circuit to the register).

Register state: a vector in \mathbb{R}^{2^n} .

Probabilistic Computation

- 1. Initialize the register to $|x\rangle$, on input $x \in \{0,1\}^n$.
- 2. Run the computation by computing a matrix-vector product $F_T\cdots F_3F_2F_1|x\rangle$ (i.e., apply the circuit to the register).
- 3. **Measure** the register.

Register state: a vector in \mathbb{R}^{2^n} .

Probabilistic Computation

- 1. Initialize the register to $|x\rangle$, on input $x \in \{0,1\}^n$.
- 2. Run the computation by computing a matrix-vector product $F_T \cdots F_3 F_2 F_1 |x\rangle$ (i.e., apply the circuit to the register).
- 3. Measure the register.

If the output of the computation is $\sum_y \alpha_y |y\rangle$, we will measure y with probability $\alpha_y.$

Register state: a vector in \mathbb{R}^{2^n} .

Probabilistic Computation

- 1. **Initialize** the register to $|x\rangle$, on input $x \in \{0,1\}^n$.
- 2. **Run** the computation by computing a matrix-vector product $F_T \cdots F_3 F_2 F_1 |x\rangle$ (i.e., apply the circuit to the register).
- 3. Measure the register.

If the output of the computation is $\sum_y \alpha_y |y\rangle$, we will measure y with probability α_y .

We require that F_i s:

Register state: a vector in \mathbb{R}^{2^n} .

Probabilistic Computation

- 1. **Initialize** the register to $|x\rangle$, on input $x \in \{0,1\}^n$.
- 2. **Run** the computation by computing a matrix-vector product $F_T \cdots F_3 F_2 F_1 |x\rangle$ (i.e., apply the circuit to the register).
- 3. Measure the register.

If the output of the computation is $\sum_y \alpha_y |y\rangle$, we will measure y with probability α_y .

We require that F_i s:

▶ come from a fixed set of universal gates (AND, OR, etc.),

Register state: a vector in \mathbb{R}^{2^n} .

Probabilistic Computation

- 1. **Initialize** the register to $|x\rangle$, on input $x \in \{0,1\}^n$.
- 2. **Run** the computation by computing a matrix-vector product $F_T \cdots F_3 F_2 F_1 |x\rangle$ (i.e., apply the circuit to the register).
- 3. Measure the register.

If the output of the computation is $\sum_y \alpha_y |y\rangle$, we will measure y with probability $\alpha_y.$

We require that F_i s:

- come from a fixed set of universal gates (AND, OR, etc.),
- ▶ preserve the L_1 norm (i.e., are stochastic matrices).

Register state: a vector in \mathbb{R}^{2^n} .

Probabilistic Computation

- 1. **Initialize** the register to $|x\rangle$, on input $x \in \{0,1\}^n$.
- 2. **Run** the computation by computing a matrix-vector product $F_T \cdots F_3 F_2 F_1 |x\rangle$ (i.e., apply the circuit to the register).
- 3. Measure the register.

If the output of the computation is $\sum_y \alpha_y |y\rangle$, we will measure y with probability α_y .

We require that F_i s:

Probabilities sum to one.

- ► come from a fixed set of universal gates (AND,
- ightharpoonup preserve the L_1 norm (i.e., are stochastic matrices).

Probabilistic Computation

Register state: a vector in \mathbb{R}^{2^n} .

Probabilistic Computation

- 1. **Initialize** the register to $|x\rangle$, on input $x \in \{0,1\}^n$.
- 2. **Run** the computation by computing a matrix-vector product $F_T \cdots F_3 F_2 F_1 |x\rangle$ (i.e., apply the circuit to the register).
- 3. Measure the register.

If the output of the computation is $\sum_y \alpha_y |y\rangle$, we will measure y with probability α_y .

We require that F_i s:

- come from a fixed set of universal gates (AND, OR, etc.),
- ▶ preserve the L_1 norm (i.e., are stochastic matrices).

Quantum Computation

Register state: a vector in \mathbb{C}^{2^n} . (A "superposition")

Quantum Computation

- 1. **Initialize** the register to $|x\rangle$, on input $x \in \{0,1\}^n$.
- 2. Run the computation by computing a matrix-vector product $F_T\cdots F_3F_2F_1|x\rangle$ (i.e., apply the circuit to the register).
- 3. **Measure** the register.

If the output of the computation is $\sum_y \alpha_y |y\rangle$, we will measure y with probability $|\alpha_y|^2$, where α_y is an "amplitude."

We require that the F_i s:

- \triangleright come from a fixed set of universal gates (H, T, etc.),
- ▶ preserve the L_2 norm (i.e., are unitary matrices).

Quantum Computation

Register state: a vector in \mathbb{C}^{2^n} . (A "superposition")

Quantum Computation

- 1. **Initialize** the register to $|x\rangle$, on input $x \in \{0,1\}^n$.
- 2. Run the computation by computing a matrix-vector product $F_T\cdots F_3F_2F_1|x\rangle$ (i.e., apply the circuit to the register).
- 3. **Measure** the register.

If the output of the computation is $\sum_y \alpha_y |y\rangle$, we will measure y with probability $|\alpha_y|^2$, where α_y is an "amplitude."

We require that the F_i s:

Probabilities sum to one.

- ► come from a fixed set of universal gates (h
- ▶ preserve the L_2 norm (i.e., are unitary matrices).

Example: Quantum Circuit

Observations about QC

Observations about QC

1. Gates must represent unitary transformations ($UU^{\dagger}=I$), so all computation must be **reversible**.

Observations about QC

- 1. Gates must represent unitary transformations ($UU^{\dagger}=I$), so all computation must be **reversible**.
- 2. Amplitudes can be **negative**, unlike probabilities.
 - This is the source of QC's apparent power.

Useful Tool: Hadamard Gate

Definition

The $Hadamard\ gate\ H$ is the quantum analogue of a classical bit-flip:

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}.$$

Useful Tool: Hadamard Gate

Definition

The $Hadamard\ gate\ H$ is the quantum analogue of a classical bit-flip:

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}.$$

$$H|0\rangle \mapsto \frac{|0\rangle + |1\rangle}{\sqrt{2}}$$

Useful Tool: Hadamard Gate

Definition

The $Hadamard\ gate\ H$ is the quantum analogue of a classical bit-flip:

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}.$$

$$H|0\rangle\mapsto \frac{|0\rangle+|1\rangle}{\sqrt{2}}$$

The operator $H^{\otimes n}$ applies H to each of n qubits.

Fact (Lecerf 1963, Bennett 1973)

If $f:\{0,1\}^n \to \{0,1\}$ is computable with a T(n)-size classical circuit, then there is a size-O(T(n)) quantum circuit that maps:

$$|x\rangle|y\rangle \quad \mapsto \quad |x\rangle|y\oplus f(x)\rangle,$$

possibly using O(T(n)) extra "work" bits.

Fact (Lecerf 1963, Bennett 1973)

If $f:\{0,1\}^n \to \{0,1\}$ is computable with a T(n)-size classical circuit, then there is a size-O(T(n)) quantum circuit that maps:

$$|x\rangle|y\rangle \quad \mapsto \quad |x\rangle|y\oplus f(x)\rangle,$$

possibly using O(T(n)) extra "work" bits.

Can make quantum queries to a classical function!

Fact (Lecerf 1963, Bennett 1973)

If $f:\{0,1\}^n \to \{0,1\}$ is computable with a T(n)-size classical circuit, then there is a size-O(T(n)) quantum circuit that maps:

$$|x\rangle|y\rangle \quad \mapsto \quad |x\rangle|y\oplus f(x)\rangle,$$

possibly using O(T(n)) extra "work" bits.

There is also a quantum circuit Q_f of similar size that takes:

$$|x\rangle \mapsto (-1)^{f(x)}|x\rangle.$$

Fact (Lecerf 1963, Bennett 1973)

If $f:\{0,1\}^n \to \{0,1\}$ is computable with a T(n)-size classical circuit, then there is a size-O(T(n)) quantum circuit that maps:

$$|x\rangle|y\rangle \quad \mapsto \quad |x\rangle|y\oplus f(x)\rangle,$$

possibly using O(T(n)) extra "work" bits.

There is also a quantum circuit Q_f of similar size that takes:

$$|x\rangle \mapsto (-1)^{f(x)}|x\rangle.$$

This essentially changes the sign of "good" xs in a superposition.

Overview

Motivation

Background

Grover's Algorithm
Unstructured Search
The Algorithm
Lower Bound

Applications

Conclusion

Given oracle access to a function $f:[N] \to \{0,1\}$, find a value $x \in [N]$ such that f(x) = 1.

Given oracle access to a function $f:[N] \to \{0,1\}$, find a value $x \in [N]$ such that f(x) = 1.

Many cool applications discussed in a moment.

Given oracle access to a function $f:[N] \to \{0,1\}$, find a value $x \in [N]$ such that f(x) = 1.

Many cool applications discussed in a moment.

A few interesting variants:

Given oracle access to a function $f:[N] \to \{0,1\}$, find a value $x \in [N]$ such that f(x) = 1.

Many cool applications discussed in a moment.

A few interesting variants:

Unique solution,

Given oracle access to a function $f:[N] \to \{0,1\}$, find a value $x \in [N]$ such that f(x) = 1.

Many cool applications discussed in a moment.

A few interesting variants:

Unique solution, Exactly s solutions,

Given oracle access to a function $f:[N] \to \{0,1\}$, find a value $x \in [N]$ such that f(x) = 1.

Many cool applications discussed in a moment.

A few interesting variants:

Unique solution, Exactly s solutions, Unknown # of solutions.

Given oracle access to a function $f:[N] \to \{0,1\}$, find a value $x \in [N]$ such that f(x) = 1.

Many cool applications discussed in a moment.

A few interesting variants:

Unique solution, Exactly s solutions, Unknown # of solutions.

Fact

A classical algorithm for unstructured search that succeeds with constant probability must make $\Omega(N)$ queries.

Theorem (Grover 1996)

Theorem (Grover 1996)

There is a **quantum** algorithm for unstructured search that makes $O(\sqrt{N})$ **quantum** queries and succeeds with probability at least 2/3.

Grover's Algorithm

Let $f: \{0,1\}^n \to \{0,1\}$ and let $N=2^n$.

Grover's Algorithm

Let $f: \{0,1\}^n \to \{0,1\}$ and let $N = 2^n$.

- ▶ Oracle: operator Q_f that maps $|x\rangle \mapsto (-1)^{f(x)}|x\rangle$.
- ▶ We can define an operator Q_0 that inverts the sign of $|0^n\rangle$.
- $ightharpoonup H^{\otimes n}$ is the quantum n-bit flip operator.

Grover's Algorithm

Let $f: \{0,1\}^n \to \{0,1\}$ and let $N = 2^n$.

- ▶ Oracle: operator Q_f that maps $|x\rangle \mapsto (-1)^{f(x)}|x\rangle$.
- ▶ We can define an operator Q_0 that inverts the sign of $|0^n\rangle$.
- $ightharpoonup H^{\otimes n}$ is the quantum n-bit flip operator.

The Algorithm.

- 1. Initialize an n-bit register to the state $H^{\otimes n}|0^n\rangle$.
- 2. Apply the following operator $O(\sqrt{N})$ times:

$$G = -H^{\otimes n} Q_0 H^{\otimes n} Q_f.$$

3. **Measure** the state of the register and output it.

(Following expositions of Watrous and Jozsa)

$$A = \{x \mid f(x) = 1\}$$
 ("awesome strings") with $a = |A|$, and

(Following expositions of Watrous and Jozsa)

$$A=\{x\mid f(x)=1\}$$
 ("awesome strings") with $a=|A|$, and $B=\{x\mid f(x)=0\}$ ("bad strings"), with $b=|B|$.

(Following expositions of Watrous and Jozsa)

Define:

$$A=\{x\mid f(x)=1\}$$
 ("awesome strings") with $a=|A|$, and $B=\{x\mid f(x)=0\}$ ("bad strings"), with $b=|B|$.

$$\begin{split} |A\rangle &= \frac{1}{\sqrt{a}} \sum_{x \in A} |x\rangle \text{, and} \\ |B\rangle &= \frac{1}{\sqrt{b}} \sum_{x \in B} |x\rangle. \end{split}$$

(Following expositions of Watrous and Jozsa)

Define:

$$A=\{x\mid f(x)=1\}$$
 ("awesome strings") with $a=|A|$, and $B=\{x\mid f(x)=0\}$ ("bad strings"), with $b=|B|$.

Define:

$$|A\rangle = \frac{1}{\sqrt{a}} \sum_{x \in A} |x\rangle$$
, and $|B\rangle = \frac{1}{\sqrt{b}} \sum_{x \in B} |x\rangle$.

Orthogonal unit vectors

(Following expositions of Watrous and Jozsa)

Define:

$$A=\{x\mid f(x)=1\}$$
 ("awesome strings") with $a=|A|$, and $B=\{x\mid f(x)=0\}$ ("bad strings"), with $b=|B|$.

$$\begin{split} |A\rangle &= \frac{1}{\sqrt{a}} \sum_{x \in A} |x\rangle \text{, and} \\ |B\rangle &= \frac{1}{\sqrt{b}} \sum_{x \in B} |x\rangle. \end{split}$$

(Following expositions of Watrous and Jozsa)

Define:

$$A=\{x\mid f(x)=1\}$$
 ("awesome strings") with $a=|A|$, and $B=\{x\mid f(x)=0\}$ ("bad strings"), with $b=|B|$.

Define:

$$|A\rangle = \frac{1}{\sqrt{a}} \sum_{x \in A} |x\rangle$$
, and $|B\rangle = \frac{1}{\sqrt{b}} \sum_{x \in B} |x\rangle$.

After initialization, the register is in the uniform superposition over strings:

$$H^{\otimes n}|0^n\rangle = |h\rangle = \frac{1}{\sqrt{N}}\sum_x |x\rangle = \underbrace{\sqrt{\frac{a}{N}}|A\rangle}_{\text{Awesome}} + \underbrace{\sqrt{\frac{b}{N}|B\rangle}_{\text{Bad}}}_{\text{Bad}}$$

 $G = -H^{\otimes n} Q_0 H^{\otimes n} Q_f$

 $G = -H^{\otimes n} Q_0 H^{\otimes n} Q_f$

 $G = -H^{\otimes n} Q_0 H^{\otimes n} \mathbf{Q}_f$

 $G = -\mathbf{H}^{\otimes n} \mathbf{Q}_0 \mathbf{H}^{\otimes n} Q_f$

$$G = -H^{\otimes n} Q_0 H^{\otimes n} Q_f$$

After t Grover iterations, the angle between the register state and $|B\rangle$ is $\approx 2\theta t$. We want the bad state $|B\rangle$ and the register state to be orthogonal:

$$2\theta t = \frac{\pi}{2}.$$

After t Grover iterations, the angle between the register state and $|B\rangle$ is $\approx 2\theta t$. We want the bad state $|B\rangle$ and the register state to be orthogonal:

$$2\theta t = \frac{\pi}{2}.$$

Num. Solutions	Iterations
1	$\frac{\pi}{4} \cdot \sqrt{N}$
a	$\frac{\pi}{4} \cdot \sqrt{\frac{N}{a}}$
Unknown	$t \leftarrow_R \{1, \dots, \sqrt{N}\}$

After t Grover iterations, the angle between the register state and $|{\it B}\rangle$ is $\approx 2\theta t$. We want the bad state $|{\it B}\rangle$ and the register state to be orthogonal:

$$2\theta t = \frac{\pi}{2}.$$

Num. Solutions	Iterations
1	$\frac{\pi}{4} \cdot \sqrt{N}$
a	$\frac{\pi}{4} \cdot \sqrt{\frac{N}{a}}$
Unknown	$t \leftarrow_R \{1, \dots, \sqrt{N}\}$

One query per iteration $\Rightarrow O(\sqrt{N})$ queries.

Lower Bound

Definition (Decision Grover Problem)

Given oracle access to $f:[N] \to \{0,1\}$, decide whether there exists an x such that f(x)=1 with probability better than 2/3.

Lower Bound

Definition (Decision Grover Problem)

Given oracle access to $f:[N] \to \{0,1\}$, decide whether there exists an x such that f(x)=1 with probability better than 2/3.

Theorem (Bennet, Bernstein, Brassard, Vazirani 1997)

For every quantum algorithm that makes $o(\sqrt{N})$ queries to f, there exists an f for which the algorithm fails to solve the Decision Grover Problem.

Proof Idea. Fix a *T*-query quantum algorithm:

$$\mathbf{Q}_f U_T \mathbf{Q}_f \cdots \mathbf{Q}_f U_3 \mathbf{Q}_f U_2 \mathbf{Q}_f U_1 | 0^n \rangle$$

Proof Idea. Fix a T-query quantum algorithm:

$$\mathbf{Q}_f U_T \mathbf{Q}_f \cdots \mathbf{Q}_f U_3 \mathbf{Q}_f U_2 \mathbf{Q}_f U_1 | 0^n \rangle$$

If f is zero everywhere, $Q_f = I$.

Proof Idea. Fix a T-query quantum algorithm:

$$\mathbf{Q}_f U_T \mathbf{Q}_f \cdots \mathbf{Q}_f U_3 \mathbf{Q}_f U_2 \mathbf{Q}_f U_1 | 0^n \rangle$$

If f is zero everywhere, $Q_f = I$.

Proof Idea. Fix a T-query quantum algorithm:

$$\mathbf{Q}_f U_T \mathbf{Q}_f \cdots \mathbf{Q}_f U_3 \mathbf{Q}_f U_2 \mathbf{Q}_f U_1 | 0^n \rangle$$

If f is zero everywhere, $Q_f = I$.

$$|\phi^{x^*}\rangle = \mathbf{Q}_f U_T \mathbf{Q}_f \cdots \mathbf{Q}_f U_3 \mathbf{Q}_f U_2 \mathbf{Q}_f U_1 |0^n\rangle$$

Proof Idea. Fix a T-query quantum algorithm:

$$\mathbf{Q}_f U_T \mathbf{Q}_f \cdots \mathbf{Q}_f U_3 \mathbf{Q}_f U_2 \mathbf{Q}_f U_1 | 0^n \rangle$$

If f is zero everywhere, $Q_f = I$.

$$|\phi^{x^*}\rangle = \mathbf{Q}_f U_T \mathbf{Q}_f \cdots \mathbf{Q}_f U_3 \mathbf{Q}_f U_2 \mathbf{Q}_f U_1 |0^n\rangle$$
$$\mathbf{Q}_f U_T \mathbf{Q}_f \cdots \mathbf{Q}_f U_3 \mathbf{Q}_f U_2 U_1 |0^n\rangle$$

Proof Idea. Fix a *T*-query quantum algorithm:

$$\mathbf{Q}_f U_T \mathbf{Q}_f \cdots \mathbf{Q}_f U_3 \mathbf{Q}_f U_2 \mathbf{Q}_f U_1 | 0^n \rangle$$

If f is zero everywhere, $Q_f = I$.

$$|\phi^{x^*}\rangle = \mathbf{Q}_f U_T \mathbf{Q}_f \cdots \mathbf{Q}_f U_3 \mathbf{Q}_f U_2 \mathbf{Q}_f U_1 |0^n\rangle$$
$$\mathbf{Q}_f U_T \mathbf{Q}_f \cdots \mathbf{Q}_f U_3 \mathbf{Q}_f U_2 U_1 |0^n\rangle$$
$$\mathbf{Q}_f U_T \mathbf{Q}_f \cdots \mathbf{Q}_f U_3 U_2 U_1 |0^n\rangle$$

Thm. For every quantum algorithm that makes $o(\sqrt{N})$ queries to f, there exists an f for which the algorithm fails to solve the DGP.

Proof Idea. Fix a T-query quantum algorithm:

$$\mathbf{Q}_f U_T \mathbf{Q}_f \cdots \mathbf{Q}_f U_3 \mathbf{Q}_f U_2 \mathbf{Q}_f U_1 | 0^n \rangle$$

If f is zero everywhere, $Q_f = I$.

Interpolate between the non-zero case and the all-zero case...

$$|\phi^{x^*}\rangle = \mathbf{Q}_f U_T \mathbf{Q}_f \cdots \mathbf{Q}_f U_3 \mathbf{Q}_f U_2 \mathbf{Q}_f U_1 |0^n\rangle$$

$$\mathbf{Q}_f U_T \mathbf{Q}_f \cdots \mathbf{Q}_f U_3 \mathbf{Q}_f U_2 U_1 |0^n\rangle$$

$$\mathbf{Q}_f U_T \mathbf{Q}_f \cdots \mathbf{Q}_f U_3 U_2 U_1 |0^n\rangle$$

$$\mathbf{Q}_f U_T \mathbf{Q}_f \cdots U_3 U_2 U_1 |0^n\rangle$$

Thm. For every quantum algorithm that makes $o(\sqrt{N})$ queries to f, there exists an f for which the algorithm fails to solve the DGP.

Proof Idea. Fix a T-query quantum algorithm:

$$\mathbf{Q}_f U_T \mathbf{Q}_f \cdots \mathbf{Q}_f U_3 \mathbf{Q}_f U_2 \mathbf{Q}_f U_1 | 0^n \rangle$$

If f is zero everywhere, $Q_f = I$.

Interpolate between the non-zero case and the all-zero case...

$$|\phi^{x^*}\rangle = \mathbf{Q}_f U_T \mathbf{Q}_f \cdots \mathbf{Q}_f U_3 \mathbf{Q}_f U_2 \mathbf{Q}_f U_1 |0^n\rangle$$

$$\mathbf{Q}_f U_T \mathbf{Q}_f \cdots \mathbf{Q}_f U_3 \mathbf{Q}_f U_2 U_1 |0^n\rangle$$

$$\mathbf{Q}_f U_T \mathbf{Q}_f \cdots \mathbf{Q}_f U_3 U_2 U_1 |0^n\rangle$$

$$\mathbf{Q}_f U_T \mathbf{Q}_f \cdots U_3 U_2 U_1 |0^n\rangle$$

$$\vdots$$

Thm. For every quantum algorithm that makes $o(\sqrt{N})$ queries to f, there exists an f for which the algorithm fails to solve the DGP.

Proof Idea. Fix a *T*-query quantum algorithm:

$$\mathbf{Q}_f U_T \mathbf{Q}_f \cdots \mathbf{Q}_f U_3 \mathbf{Q}_f U_2 \mathbf{Q}_f U_1 | 0^n \rangle$$

If f is zero everywhere, $Q_f = I$.

Interpolate between the non-zero case and the all-zero case...

$$|\phi^{x^*}\rangle = \mathbf{Q}_f U_T \mathbf{Q}_f \cdots \mathbf{Q}_f U_3 \mathbf{Q}_f U_2 \mathbf{Q}_f U_1 |0^n\rangle$$

$$\mathbf{Q}_f U_T \mathbf{Q}_f \cdots \mathbf{Q}_f U_3 \mathbf{Q}_f U_2 U_1 |0^n\rangle$$

$$\mathbf{Q}_f U_T \mathbf{Q}_f \cdots \mathbf{Q}_f U_3 U_2 U_1 |0^n\rangle$$

$$\mathbf{Q}_f U_T \mathbf{Q}_f \cdots U_3 U_2 U_1 |0^n\rangle$$

$$\vdots$$

$$|\phi\rangle = U_T \cdots U_3 U_2 U_1 |0^n\rangle$$

$$\sum_x \alpha_{x,t} |x\rangle = {\rm state} \ {\rm before} \ t{\rm -th} \ {\rm query}$$

$$x^* = {\rm the} \ {\rm ``target''} \ {\rm value}$$

$$\sum_x lpha_{x,t} |x
angle =$$
 state before t -th query
$$x^* =$$
 the "target" value

▶ With each query, the Euclidean distance between the two states can grow by at most $2|\alpha_{x^*,t}|$.

$$\sum_x \alpha_{x,t} |x\rangle = \text{state before } t\text{-th query}$$

$$x^* = \text{the "target" value}$$

- ▶ With each query, the Euclidean distance between the two states can grow by at most $2|\alpha_{x^*,t}|$.
- ▶ To distinguish, the distance after T queries needs to be at least a constant ϵ , so: $\epsilon \leq 2 \sum_{t=1}^{T} |\alpha_{x^*,t}|$.

$$\sum_x lpha_{x,t} |x
angle =$$
 state before t -th query
$$x^* =$$
 the "target" value

- ▶ With each query, the Euclidean distance between the two states can grow by at most $2|\alpha_{x^*,t}|$.
- ▶ To distinguish, the distance after T queries needs to be at least a constant ϵ , so: $\epsilon \leq 2 \sum_{t=1}^{T} |\alpha_{x^*,t}|$.
- ► To complete the proof, sum over all N possible x*s:

$$\epsilon N \le 2 \sum_{t=1}^{T} \sum_{x^*=1}^{N} |\alpha_{x^*,t}| \le \sum_{t=1}^{T} \sqrt{N} \sqrt{\sum_{x^*=1}^{N} |\alpha_{x^*,t}|^2} \le 2T\sqrt{N}.$$

$$\sum_x lpha_{x,t} |x
angle =$$
 state before t -th query
$$x^* =$$
 the "target" value

- ▶ With each query, the Euclidean distance between the two states can grow by at most $2|\alpha_{x^*,t}|$.
- ▶ To distinguish, the distance after T queries needs to be at least a constant ϵ , so: $\epsilon \leq 2 \sum_{t=1}^{T} |\alpha_{x^*,t}|$.
- ► To complete the proof, sum over all N possible x*s:

$$\epsilon N \le 2 \sum_{t=1}^{T} \sum_{x^*=1}^{N} |\alpha_{x^*,t}| \le \sum_{t=1}^{T} \sqrt{N} \sqrt{\sum_{x^*=1}^{N} |\alpha_{x^*,t}|^2} \le 2T\sqrt{N}.$$

$$\Rightarrow \frac{\epsilon}{2}\sqrt{N} \le T$$

Overview

Motivation

Background

Grover's Algorithm

Applications

Breaking Block Ciphers

Collision Finding

Password Cracking

Conclusion

For this talk, a block cipher is an efficient deterministic function:

$$E: \mathcal{K} \times \{0,1\}^n \to \{0,1\}^n.$$

For this talk, a block cipher is an efficient deterministic function:

$$E: \mathcal{K} \times \{0,1\}^n \to \{0,1\}^n.$$

A necessary (not sufficient) security property is that, for $k \xleftarrow{R} \mathcal{K}$, an adversary given

cannot recover \boldsymbol{k} faster than a brute-force search of the key-space.

For this talk, a block cipher is an efficient deterministic function:

$$E: \mathcal{K} \times \{0,1\}^n \to \{0,1\}^n.$$

A necessary (not sufficient) security property is that, for $k \stackrel{R}{\leftarrow} \mathcal{K}$, an adversary given

cannot recover \boldsymbol{k} faster than a brute-force search of the key-space.

Viewing $E(\cdot,\cdot)$ as an oracle, an adversary making q queries should succeed with probability at most $\approx q/|\mathcal{K}|$.

Grover search recovers the key in time $O(\sqrt{|\mathcal{K}|})$.

Grover search recovers the key in time $O(\sqrt{|\mathcal{K}|})$.

Attack Using Grover

- 1. Attacker receives challenge $c = (c_0, c_1, c_2)$.
- 2. Define a function $f_c: \mathcal{K} \to \{0,1\}$ as:

$$f_c(k) \stackrel{\text{def}}{=} \big\{ (E(k, \text{``0"}), E(k, \text{``1"}), E(k, \text{``2"})) = (c_0, c_1, c_2) \big\}.$$

- 3. Run Grover's algorithm on f_c .
- 4. In $O(\sqrt{|\mathcal{K}|})$ iterations, Grover returns k w.h.p.

Grover search recovers the key in time $O(\sqrt{|\mathcal{K}|})$.

Attack Using Grover

- 1. Attacker receives challenge $c = (c_0, c_1, c_2)$.
- 2. Define a function $f_c: \mathcal{K} \to \{0,1\}$ as:

$$f_c(k) \stackrel{\text{def}}{=} \big\{ (E(k, \text{``0"}), E(k, \text{``1"}), E(k, \text{``2"})) = (c_0, c_1, c_2) \big\}.$$

- 3. Run Grover's algorithm on f_c .
- 4. In $O(\sqrt{|\mathcal{K}|})$ iterations, Grover returns k w.h.p.

Attacking AES-128

Grover search recovers the key in time $O(\sqrt{|\mathcal{K}|})$.

Attack Using Grover

- 1. Attacker receives challenge $c = (c_0, c_1, c_2)$.
- 2. Define a function $f_c: \mathcal{K} \to \{0,1\}$ as:

$$f_c(k) \stackrel{\text{def}}{=} \big\{ (E(k, \text{``0"}), E(k, \text{``1"}), E(k, \text{``2"})) = (c_0, c_1, c_2) \big\}.$$

- 3. Run Grover's algorithm on f_c .
- 4. In $O(\sqrt{|\mathcal{K}|})$ iterations, Grover returns k w.h.p.

Attacking AES-128

Special-purpose classical attack: $2^{126.1}$ (Bogdanov et al. 2011)

Grover search recovers the key in time $O(\sqrt{|\mathcal{K}|})$.

Attack Using Grover

- 1. Attacker receives challenge $c = (c_0, c_1, c_2)$.
- 2. Define a function $f_c: \mathcal{K} \to \{0,1\}$ as:

$$f_c(k) \stackrel{\text{def}}{=} \big\{ (E(k, \text{``0"}), E(k, \text{``1"}), E(k, \text{``2"})) = (c_0, c_1, c_2) \big\}.$$

- 3. Run Grover's algorithm on f_c .
- 4. In $O(\sqrt{|\mathcal{K}|})$ iterations, Grover returns k w.h.p.

Attacking AES-128

Special-purpose classical attack: $2^{126.1}$ (Bogdanov et al. 2011) Generic quantum attack: 2^{64} . !!!

Let H be a random function.

Let H be a random function.

Problem: Given oracle access to $H:[2N] \to [N]$, find distinct elements x and x' such that H(x) = H(x').

Let H be a random function.

Problem: Given oracle access to $H:[2N] \to [N]$, find distinct elements x and x' such that H(x) = H(x').

To succeed with constant probability (by the Birthday Bound), a classical algorithm requires $\Theta(\sqrt{N})$ queries.

[Compute $H(0), H(1), H(2), \ldots$ until you find a collision.]

Let H be a random function.

Problem: Given oracle access to $H:[2N] \to [N]$, find distinct elements x and x' such that H(x) = H(x').

To succeed with constant probability (by the Birthday Bound), a classical algorithm requires $\Theta(\sqrt{N})$ queries.

[Compute $H(0), H(1), H(2), \ldots$ until you find a collision.]

Theorem (Brassard, Høyer, Tapp 1997)

There is a quantum collision-finding algorithm that makes $O(N^{1/3})$ quantum queries and succeeds with constant probability.

Algorithm Idea

Algorithm Idea

► Build a big table of random values and their hashes.

Algorithm Idea

 Build a big table of random values and their hashes.

r_0	$H(r_0)$	
r_1	$H(r_1)$	
r_2	$H(r_2)$	
r_3	$H(r_3)$	
ŧ	ŧ	$O(N^{1/3})$
		<i> </i>

Algorithm Idea

- Build a big table of random values and their hashes.
- Use Grover search to quickly find a value that collides with one in the table.

$ \begin{array}{c c} r_0 \\ \hline r_1 \\ \hline r_2 \\ \hline r_3 \\ \vdots \\ \end{array} $	$H(r_0)$ $H(r_1)$ $H(r_2)$ $H(r_3)$	$O(N^{1/3})$
•	:	- (')

Algorithm Idea

- Build a big table of random values and their hashes.
- Use Grover search to quickly find a value that collides with one in the table.

Algorithm

- 1. Sample $O(N^{1/3})$ random integers $r_i \in [2N]$, compute $h_i \leftarrow H(r_i)$, and store each (r_i, h_i) in a table T.
- 2. Define a function $f_T:[2N] \to \{0,1\}$:

$$f_T(x) \stackrel{\text{def}}{=} \left\{ \begin{array}{l} h^* \leftarrow H(x) \\ \text{Look for a pair } (r_i,h_i) \in T \text{ with } h_i = h^* \\ \text{If such a pair exists and } r_i \neq x \text{, return } 1. \end{array} \right.$$

- 3. Use Grover search to find a "good" x.
- 4. Use the table to find the colliding r, and output (x, r).

Algorithm

- 1. Sample $O(N^{1/3})$ random integers $r_i \in [2N]$, compute $h_i \leftarrow H(r_i)$, and store each (r_i, h_i) in a table T.
- 2. Define a function $f_T:[2N] \to \{0,1\}$:

$$f_T(x) \stackrel{\text{def}}{=} \left\{ \begin{array}{l} h^* \leftarrow H(x) \\ \text{Look for a pair } (r_i,h_i) \in T \text{ with } h_i = h^* \\ \text{If such a pair exists and } r_i \neq x \text{, return } 1. \end{array} \right.$$

- 3. Use Grover search to find a "good" x.
- 4. Use the table to find the colliding r, and output (x, r).

Analysis

▶ Step 1 makes $O(N^{1/3})$ queries to H.

Algorithm

- 1. Sample $O(N^{1/3})$ random integers $r_i \in [2N]$, compute $h_i \leftarrow H(r_i)$, and store each (r_i, h_i) in a table T.
- 2. Define a function $f_T:[2N] \to \{0,1\}$:

$$f_T(x) \stackrel{\text{def}}{=} \left\{ \begin{array}{l} h^* \leftarrow H(x) \\ \text{Look for a pair } (r_i,h_i) \in T \text{ with } h_i = h^* \\ \text{If such a pair exists and } r_i \neq x, \text{ return } 1. \end{array} \right.$$

- 3. Use Grover search to find a "good" x.
- 4. Use the table to find the colliding r, and output (x, r).

Analysis

- ▶ Step 1 makes $O(N^{1/3})$ queries to H.
- ▶ Step 3 is a Grover search over space of size 2N, with $\approx N^{1/3}$ possible solutions.

Algorithm

- 1. Sample $O(N^{1/3})$ random integers $r_i \in [2N]$, compute $h_i \leftarrow H(r_i)$, and store each (r_i, h_i) in a table T.
- 2. Define a function $f_T:[2N] \to \{0,1\}$:

$$f_T(x) \stackrel{\text{def}}{=} \left\{ \begin{array}{l} h^* \leftarrow H(x) \\ \text{Look for a pair } (r_i,h_i) \in T \text{ with } h_i = h^* \\ \text{If such a pair exists and } r_i \neq x, \text{ return } 1. \end{array} \right.$$

- 3. Use Grover search to find a "good" x.
- 4. Use the table to find the colliding r, and output (x, r).

Analysis

- ▶ Step 1 makes $O(N^{1/3})$ queries to H.
- ▶ Step 3 is a Grover search over space of size 2N, with $\approx N^{1/3}$ possible solutions. $\Rightarrow O(\sqrt{N/N^{1/3}}) = O(N^{1/3})$ queries.

Is the collision-finding algorithm practical?

Is the collision-finding algorithm practical?

▶ The **query** complexity is $O(N^{1/3})$.

Is the collision-finding algorithm practical?

▶ The **query** complexity is $O(N^{1/3})$. ✓

Is the collision-finding algorithm practical?

- ▶ The query complexity is $O(N^{1/3})$. ✓
- ► What is the size of the quantum circuit?

Is the collision-finding algorithm practical?

- ▶ The **query** complexity is $O(N^{1/3})$. ✓
- ► What is the size of the quantum circuit?

Is the collision-finding algorithm practical?

- ▶ The query complexity is $O(N^{1/3})$. ✓
- ► What is the size of the quantum circuit?

Each Grover iteration encodes a table of size $\Theta(N^{1/3})$, so the G circuit has $\Theta(N^{1/3})$ gates. (!)

▶ Mounting the attack requires a QC with $\Theta(N^{1/3})$ qubits! (In contrast, the cipher attack requires a QC with a few thousand qubits.)

- ▶ Mounting the attack requires a QC with $\Theta(N^{1/3})$ qubits! (In contrast, the cipher attack requires a QC with a few thousand qubits.)
- ▶ If you have $\Theta(N^{1/3})$ qubits, you might as well use **parallel** Grover search:

- ▶ Mounting the attack requires a QC with $\Theta(N^{1/3})$ qubits! (In contrast, the cipher attack requires a QC with a few thousand qubits.)
- ▶ If you have $\Theta(N^{1/3})$ qubits, you might as well use **parallel** Grover search:

Parallel Grover (Grover and Rudolph 2003)

- 1. Pick an $x_0 \stackrel{R}{\leftarrow} [N]$.
- 2. Define $f:[2N] \rightarrow \{0,1\}$ as:

$$f_{x_0}(x) \stackrel{\text{def}}{=} \{ H(x) = H(x_0) \text{ and } x \neq x_0 \}.$$

- 3. Divide search space into $N^{1/3}$ pieces.
- 4. Run Grover on each piece in parallel.

Parallel Grover (Grover and Rudolph 2003)

- 1. Pick an $x_0 \stackrel{R}{\leftarrow} [N]$.
- 2. Define $f:[2N] \rightarrow \{0,1\}$ as:

$$f_{x_0}(x) \stackrel{\text{def}}{=} \{H(x) = H(x_0) \text{ and } x \neq x_0\}.$$

- 3. Divide search space into $N^{1/3}$ pieces.
- 4. Run Grover on each piece in parallel.

Analysis.

Each machine searches over a space of size $O(N/N^{1/3})$.

Parallel Grover (Grover and Rudolph 2003)

- 1. Pick an $x_0 \stackrel{R}{\leftarrow} [N]$.
- 2. Define $f:[2N] \rightarrow \{0,1\}$ as:

$$f_{x_0}(x) \stackrel{\text{def}}{=} \{H(x) = H(x_0) \text{ and } x \neq x_0\}.$$

- 3. Divide search space into $N^{1/3}$ pieces.
- 4. Run Grover on each piece in parallel.

Analysis.

Each machine searches over a space of size $O(N/N^{1/3})$.

We expect one space to contain a colliding input.

Parallel Grover (Grover and Rudolph 2003)

- 1. Pick an $x_0 \stackrel{R}{\leftarrow} [N]$.
- 2. Define $f:[2N] \rightarrow \{0,1\}$ as:

$$f_{x_0}(x) \stackrel{\text{def}}{=} \{H(x) = H(x_0) \text{ and } x \neq x_0\}.$$

- 3. Divide search space into $N^{1/3}$ pieces.
- 4. Run Grover on each piece in parallel.

Analysis.

Each machine searches over a space of size $O(N/N^{1/3})$.

We expect one space to contain a colliding input.

Running time is $O(\sqrt{N^{2/3}}) = O(N^{1/3})$.

Parallel Grover (Grover and Rudolph 2003)

- 1. Pick an $x_0 \stackrel{R}{\leftarrow} [N]$.
- 2. Define $f:[2N] \rightarrow \{0,1\}$ as:

$$f_{x_0}(x) \stackrel{\text{def}}{=} \{ H(x) = H(x_0) \text{ and } x \neq x_0 \}.$$

- 3. Divide search space into $N^{1/3}$ pieces.
- 4. Run Grover on each piece in parallel.

Analysis.

Each machine searches over a space of size $O(N/N^{1/3})$.

We expect one space to contain a colliding input.

Running time is $O(\sqrt{N^{2/3}}) = O(N^{1/3})$.

If you have a size- $\Theta(N^{1/3})$ classical computer, finding collisions with the parallel rho method only takes time $O(N^{1/6})!$ (Van Oorschot and Wiener 1999) (Bernstein 2009)

- -H is a "moderately hard" function, and
- salt is a random string.

- -H is a "moderately hard" function, and
- salt is a random string.

User	Password
alice	cardinal650
bob	Stanford!
carol	CSRulez
	<u>:</u>

- -H is a "moderately hard" function, and
- salt is a random string.

User	Password	
alice	cardinal650	-
bob	Stanford!	
carol	CSRulez	
	:	

- -H is a "moderately hard" function, and
- salt is a random string.

User	Password
alice	cardinal650
bob	Stanford!
carol	CSRulez
	:
	•

User	Salt	HashedPass
alice	0x0738	0x89d7f1a
bob	0xaab3	0x1704193
carol	0x9c3e	0x726ebd9
	:	

Modern OSes store passwords as H(salt, password), where:

- -H is a "moderately hard" function, and
- salt is a random string.

User	Password	User	Salt	HashedPass
alice	cardinal650	alice	0x0738	0x89d7f1a
bob	Stanford!	bob	0xaab3	0x1704193
carol	CSRulez	carol	0x9c3e	0x726ebd9
	:		:	
	·		•	

If someone steals your password file, they have to do some work ("password cracking") to recover the stored passwords.

Problem: Given oracle access to $H:[N] \rightarrow [N]$, a dictionary of candidate passwords

$$\mathcal{D} = \{ ext{password, 12345, qwerty, } \ldots \} \subseteq [N],$$

and a target τ , find an $x \in \mathcal{D}$ such that $H(x) = \tau$.

Problem: Given oracle access to $H:[N] \rightarrow [N]$, a dictionary of candidate passwords

$$\mathcal{D} = \{ ext{password, 12345, qwerty, } \ldots \} \subseteq [N],$$

and a target τ , find an $x \in \mathcal{D}$ such that $H(x) = \tau$.

Inverting a function with *hints*.

Problem: Given oracle access to $H:[N] \rightarrow [N]$, a dictionary of candidate passwords

$$\mathcal{D} = \{ ext{password, 12345, qwerty, } \ldots \} \subseteq [N],$$

and a target τ , find an $x \in \mathcal{D}$ such that $H(x) = \tau$.

Problem: Given oracle access to $H:[N] \rightarrow [N]$, a dictionary of candidate passwords

$$\mathcal{D} = \{ ext{password, 12345, qwerty, } \ldots \} \subseteq [N],$$

and a target τ , find an $x \in \mathcal{D}$ such that $H(x) = \tau$.

Classical attack: $\Theta(|\mathcal{D}|)$ queries to H (to succeed w.p. 1/2)

Problem: Given oracle access to $H:[N] \rightarrow [N]$, a dictionary of candidate passwords

$$\mathcal{D} = \{ ext{password, 12345, qwerty, } \ldots \} \subseteq [N],$$

and a target τ , find an $x \in \mathcal{D}$ such that $H(x) = \tau$.

Classical attack: $\Theta(|\mathcal{D}|)$ queries to H (to succeed w.p. 1/2)

Grover search: $O(\sqrt{|\mathcal{D}|})$ attack.* (New?)

Problem: Given oracle access to $H:[N] \rightarrow [N]$, a dictionary of candidate passwords

$$\mathcal{D} = \{ ext{password, 12345, qwerty, } \ldots \} \subseteq [N],$$

and a target τ , find an $x \in \mathcal{D}$ such that $H(x) = \tau$.

Classical attack: $\Theta(|\mathcal{D}|)$ queries to H (to succeed w.p. 1/2)

Grover search: $O(\sqrt{|\mathcal{D}|})$ attack.* (New?)

Quantum computers essentially break all password hashing functions.

1. **Define** a function $f_{\mathcal{D}}: \{1, 2, \dots, |\mathcal{D}|\} \rightarrow \{0, 1\}$ as:

$$f_{\mathcal{D}}(i) \stackrel{\text{def}}{=} \left\{ \begin{array}{l} d_i \leftarrow \text{``ith entry in dictionary } \mathcal{D}\text{''} \\ \text{return } \tau \stackrel{?}{=} H(d_i) \end{array} \right.$$

2. Run Grover search to find a "good" i.

1. **Define** a function $f_{\mathcal{D}}: \{1, 2, \dots, |\mathcal{D}|\} \rightarrow \{0, 1\}$ as:

$$f_{\mathcal{D}}(i) \stackrel{\text{def}}{=} \left\{ \begin{array}{l} d_i \leftarrow \text{``ith entry in dictionary } \mathcal{D}\text{''} \\ \text{return } \tau \stackrel{?}{=} H(d_i) \end{array} \right.$$

2. Run Grover search to find a "good" i.

- ▶ $C_H = \text{Cost of } H \text{ query.}$
- $ightharpoonup \mathcal{C}_{\mathcal{D}} = \mathsf{Cost} \ \mathsf{of} \ \mathcal{D} \ \mathsf{query}.$

1. **Define** a function $f_{\mathcal{D}}: \{1, 2, \dots, |\mathcal{D}|\} \rightarrow \{0, 1\}$ as:

$$f_{\mathcal{D}}(i) \stackrel{\text{def}}{=} \left\{ \begin{array}{l} d_i \leftarrow \text{``ith entry in dictionary } \mathcal{D}\text{''} \\ \text{return } \tau \stackrel{?}{=} H(d_i) \end{array} \right.$$

2. **Run** Grover search to find a "good" i.

Search will use $O(\sqrt{|\mathcal{D}|})$ queries to H and \mathcal{D} .

- ▶ C_H = Cost of H query.
- $ightharpoonup \mathcal{C}_{\mathcal{D}} = \mathsf{Cost} \ \mathsf{of} \ \mathcal{D} \ \mathsf{query}.$

Attack cost = $(\# iterations) \cdot (Cost per iteration)$

1. **Define** a function $f_{\mathcal{D}}: \{1, 2, \dots, |\mathcal{D}|\} \rightarrow \{0, 1\}$ as:

$$f_{\mathcal{D}}(i) \stackrel{\text{def}}{=} \left\{ \begin{array}{l} d_i \leftarrow \text{``ith entry in dictionary } \mathcal{D}\text{''} \\ \text{return } \tau \stackrel{?}{=} H(d_i) \end{array} \right.$$

2. **Run** Grover search to find a "good" i.

- ▶ C_H = Cost of H query.
- $ightharpoonup \mathcal{C}_{\mathcal{D}} = \mathsf{Cost} \ \mathsf{of} \ \mathcal{D} \ \mathsf{query}.$

$$\begin{aligned} \text{Attack cost} &= (\# \text{ iterations}) \cdot (\text{Cost per iteration}) \\ &\approx \sqrt{|\mathcal{D}|} (\mathcal{C}_H + \textcolor{red}{\mathcal{C}_{\mathcal{D}}}) \end{aligned}$$

1. **Define** a function $f_{\mathcal{D}}: \{1, 2, \dots, |\mathcal{D}|\} \rightarrow \{0, 1\}$ as:

$$f_{\mathcal{D}}(i) \stackrel{\text{def}}{=} \left\{ \begin{array}{l} d_i \leftarrow \text{``ith entry in dictionary \mathcal{D}''} \\ \text{return } \tau \stackrel{?}{=} H(d_i) \end{array} \right.$$

2. **Run** Grover search to find a "good" i.

- ▶ $C_H = \text{Cost of } H$ query.
- $ightharpoonup \mathcal{C}_{\mathcal{D}} = \mathsf{Cost} \ \mathsf{of} \ \mathcal{D} \ \mathsf{query}.$

$$\begin{split} \text{Attack cost} &= (\# \text{ iterations}) \cdot (\text{Cost per iteration}) \\ &\approx \sqrt{|\mathcal{D}|} (\mathcal{C}_H + \mathcal{C}_{\mathcal{D}}) \quad \text{(Could be} \approx |\mathcal{D}| \log N \text{)} \end{split}$$

1. **Define** a function $f_{\mathcal{D}}: \{1, 2, \dots, |\mathcal{D}|\} \rightarrow \{0, 1\}$ as:

$$f_{\mathcal{D}}(i) \stackrel{\text{def}}{=} \left\{ \begin{array}{l} d_i \leftarrow \text{``ith entry in dictionary } \mathcal{D}\text{''} \\ \text{return } \tau \stackrel{?}{=} H(d_i) \end{array} \right.$$

2. **Run** Grover search to find a "good" i.

- $C_H = \text{Cost of } H \text{ query.}$
- $ightharpoonup \mathcal{C}_{\mathcal{D}} = \mathsf{Cost} \ \mathsf{of} \ \mathcal{D} \ \mathsf{query}.$

$$\begin{split} \text{Attack cost} &= (\# \text{ iterations}) \cdot (\text{Cost per iteration}) \\ &\approx \sqrt{|\mathcal{D}|} (\mathcal{C}_H + \mathcal{C}_{\mathcal{D}}) \quad \text{(Could be } \approx |\mathcal{D}| \log N \text{)} \\ &\approx |\mathcal{D}|^{3/2} + \sqrt{\mathcal{D}} \cdot \mathcal{C}_H \end{split}$$

1. **Define** a function $f_{\mathcal{D}}: \{1, 2, \dots, |\mathcal{D}|\} \rightarrow \{0, 1\}$ as:

$$f_{\mathcal{D}}(i) \stackrel{\text{def}}{=} \left\{ \begin{array}{l} d_i \leftarrow \text{``ith entry in dictionary } \mathcal{D}\text{''} \\ \text{return } \tau \stackrel{?}{=} H(d_i) \end{array} \right.$$

2. **Run** Grover search to find a "good" i.

Search will use $O(\sqrt{|\mathcal{D}|})$ queries to H and \mathcal{D} .

- ▶ $C_H = \text{Cost of } H$ query.
- $ightharpoonup \mathcal{C}_{\mathcal{D}} = \mathsf{Cost} \ \mathsf{of} \ \mathcal{D} \ \mathsf{query}.$

$$\begin{split} \text{Attack cost} &= (\# \text{ iterations}) \cdot (\text{Cost per iteration}) \\ &\approx \sqrt{|\mathcal{D}|} (\mathcal{C}_H + \mathcal{C}_{\mathcal{D}}) \quad \text{(Could be } \approx |\mathcal{D}| \log N \text{)} \\ &\approx |\mathcal{D}|^{3/2} + \sqrt{\mathcal{D}} \cdot \mathcal{C}_H \end{split}$$

This often beats the classical $|\mathcal{D}| \cdot \mathcal{C}_H$ attack!

If we can represent the dictionary \mathcal{D} with a **small circuit**, then the quantum attack is devastating:

$$|\mathcal{D}| \cdot \mathcal{C}_H$$
 decreases to $pprox \sqrt{|\mathcal{D}|} \cdot \mathcal{C}_H$.

If we can represent the dictionary \mathcal{D} with a small circuit, then the quantum attack is devastating:

$$|\mathcal{D}| \cdot \mathcal{C}_H$$
 decreases to $pprox \sqrt{|\mathcal{D}|} \cdot \mathcal{C}_H$.

Using amplitude amplification (Brassard, Høyer, Mosca, Tapp 2002), we can generalize the attack from

password dictionaries to password distributions.

The End of Password Hashing?

Say that an attacker's budget allows for 2^{24} hash computations. . .

The End of Password Hashing?

Say that an attacker's budget allows for $2^{24}\ \mbox{hash computations.} \ .$.

Туре	Len	Classical	Quantum
Lower-case alpha	6 char	2^{28}	2^{14}
	8 char	2^{37}	2^{19}
	10 char	2^{47}	2^{24}
Alphanumeric	6 char	2^{36}	2^{18}
	8 char	2^{47}	2^{23}
	10 char	2^{60}	2^{30}
Printable ASCII	6 char	2^{39}	2^{20}
	8 char	2^{52}	2^{26}
	10 char	2^{66}	2^{33}

Overview

Motivation

Background

Grover's Algorithm

Applications

Conclusion

Quantum computers can solve black-box search problems faster than classical computers can.

Quantum computers can solve black-box search problems faster than classical computers can.

Future Directions

Quantum computers can solve black-box search problems faster than classical computers can.

Future Directions

 Find quantum collision-finding algorithms that beat the classical ones, in terms of qubit complexity. (Grover and Rudolph 2003)

Quantum computers can solve black-box search problems faster than classical computers can.

Future Directions

- Find quantum collision-finding algorithms that beat the classical ones, in terms of qubit complexity. (Grover and Rudolph 2003)
 - ▶ ...or prove that none exist.

Quantum computers can solve black-box search problems faster than classical computers can.

Future Directions

- Find quantum collision-finding algorithms that beat the classical ones, in terms of qubit complexity. (Grover and Rudolph 2003)
 - ▶ ...or prove that none exist.
- 2. Cryptanalyze proposed post-quantum cryptosystems. Switching from RSA \rightarrow LWE doesn't necessarily protect you.

Conclusions

Quantum computers can solve black-box search problems faster than classical computers can.

Future Directions

- Find quantum collision-finding algorithms that beat the classical ones, in terms of qubit complexity. (Grover and Rudolph 2003)
 - ...or prove that none exist.
- 2. Cryptanalyze proposed post-quantum cryptosystems. Switching from RSA \rightarrow LWE doesn't necessarily protect you.
- Prove time-space lower bounds for quantum algorithms in the random-oracle model.

Conclusions

Quantum computers can solve black-box search problems faster than classical computers can.

Future Directions

- Find quantum collision-finding algorithms that beat the classical ones, in terms of qubit complexity. (Grover and Rudolph 2003)
 - ▶ ...or prove that none exist.
- 2. Cryptanalyze proposed post-quantum cryptosystems. Switching from RSA \rightarrow LWE doesn't necessarily protect you.
- 3. **Prove** time-space lower bounds for quantum algorithms in the random-oracle model.

Thank you!

References

Background

- Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach.
- Michael Nielsen and Isaac Chuang. Quantum Computation and Quantum Information.
- ▶ John Watrous. Lecture notes: Introduction to Quantum Computing https://cs.uwaterloo.ca/~watrous/LectureNotes.html

Grover's Algorithm

- Lov Grover. "A Fast Quantum Mechanical Algorithm for Database Search" (1996).
 - https://arxiv.org/abs/quant-ph/9605043
- Michel Boyer, Gilles Brassard, Peter Høyer, and Alain Tapp. "Tight Bounds on Quantum Searching" (1996). https://arxiv.org/abs/quant-ph/9605034
- Richard Jozsa. "Searching in Grover's Algorithm" (1999). https://arxiv.org/pdf/quant-ph/9901021
 - Gives the nice geometric interpretation of Grover search.
- ▶ Gilles Brassard, Peter Høyer, Michele Mosca, and Alain Tapp. "Quantum Amplitude Amplification and Estimation" (2000). https://arxiv.org/abs/quant-ph/0005055

References

Lower Bound

- Charles H. Bennett, Ethan Bernstein, Gilles Brassard, and Umesh Vazirani "Strengths and Weaknesses of Quantum Computing" (1997). https://arxiv.org/abs/quant-ph/9701001
- Ronald de Wolf. Lecture notes: "Quantum Lower Bounds" (2005). http://www.iro.umontreal.ca/~tappa/Summer%20School/montreal05.pdf
- Scott Aaronson. Lecture notes: "6.845: Quantum Complexity Theory" (2009). https:

//ocw.mit.edu/courses/electrical-engineering-and-computer-science/
6-845-quantum-complexity-theory-fall-2010/lecture-notes/

Collision Finding

- Gilles Brassard, Peter Høyer, and Alain Tapp. "Quantum Algorithm for the Collision Problem" (1997).
 - https://arxiv.org/abs/quant-ph/9705002
- Paul van Oorschot and Michael J. Wiener. "Parallel Collision Search with Cryptanalytic Applications" (1999).
 - http://people.scs.carleton.ca/~paulv/papers/JoC97.pdf
- Lov Grover and Terry Rudolph. "How Significant are the Known Collision and Element Distinctness Quantum Algorithms?" (2003). http://arxiv.org/pdf/quant-ph/0306017
- Daniel J. Bernstein. "Cost Analysis of Hash Collisions: Will Quantum Computers Make SHARCs Obsolete?" (2009). http://cr.yp.to/hash/collisioncost-20090823.pdf

References

AES Cryptanalysis

Andrey Bogdanov, Dmitry Khovratovich, and Christian Rechberger. "Biclique Cryptanalysis of the Full AES" (2011). http://proceeps.microsoft.com/op/na/projects/cryptanalysis/coebs.mif

 $/\!/ research. \verb|microsoft.com/en-us/projects/cryptanalysis/aesbc.pdf|$

Claim

The operator $R=H^{\otimes n}Q_0H^{\otimes n}$ reflects over the hyperplane orthogonal to $|h\rangle.$

Claim

The operator $R=H^{\otimes n}Q_0H^{\otimes n}$ reflects over the hyperplane orthogonal to $|h\rangle$.

The Q_0 operator flips the sign of $|0^n\rangle$ in a superposition:

$$Q_0 = I - 2|0^n\rangle\langle 0^n|.$$

Claim

The operator $R=H^{\otimes n}Q_0H^{\otimes n}$ reflects over the hyperplane orthogonal to $|h\rangle$.

The Q_0 operator flips the sign of $|0^n\rangle$ in a superposition:

$$Q_0 = I - 2 \underbrace{|0^n\rangle\langle 0^n|}_{\text{outer product}}.$$

Claim

The operator $R=H^{\otimes n}Q_0H^{\otimes n}$ reflects over the hyperplane orthogonal to $|h\rangle$.

The Q_0 operator flips the sign of $|0^n\rangle$ in a superposition:

$$Q_0 = I - 2|0^n\rangle\langle 0^n|.$$

Claim

The operator $R=H^{\otimes n}Q_0H^{\otimes n}$ reflects over the hyperplane orthogonal to $|h\rangle$.

The Q_0 operator flips the sign of $|0^n\rangle$ in a superposition:

$$Q_0 = I - 2|0^n\rangle\langle 0^n|.$$

Then $R=H^{\otimes n}Q_0H^{\otimes n}=I-2|h\rangle\langle h|$, so R takes:

$$|h\rangle \mapsto -|h\rangle \qquad \text{ and } \qquad |h^{\perp}\rangle \mapsto |h^{\perp}\rangle.$$

Claim

The operator $R=H^{\otimes n}Q_0H^{\otimes n}$ reflects over the hyperplane orthogonal to $|h\rangle$.

The Q_0 operator flips the sign of $|0^n\rangle$ in a superposition:

$$Q_0 = I - 2|0^n\rangle\langle 0^n|.$$

Then $R = H^{\otimes n}Q_0H^{\otimes n} = I - 2|h\rangle\langle h|$, so R takes:

$$|h\rangle\mapsto -|h\rangle \qquad \text{ and } \qquad |h^{\perp}\rangle\mapsto |h^{\perp}\rangle.$$

So, for any vector $|v\rangle=\alpha|h\rangle+\beta|h^{\perp}\rangle$, R maps:

$$\alpha |h\rangle + \beta |h^{\perp}\rangle \qquad \mapsto \qquad -\alpha |h\rangle + \beta |h^{\perp}\rangle.$$