Grover Search and Its
Cryptographic Applications

Henry Corrigan-Gibbs
Qualifying Exam Talk

21 November 2016

Quantum Computing and Crypto

Large-scale quantum computers could exist in our lifetimes.

2/40

Quantum Computing and Crypto

Large-scale quantum computers could exist in our lifetimes.

Quantum computers can break today's crypto primitives!

2/40

Quantum Computing and Crypto

Large-scale quantum computers could exist in our lifetimes.

Quantum computers can break today's crypto primitives!

| Examples Outcome
Public-key ‘ RSA, DH, ECDH Broken (Shor)

2/40

Quantum Computing and Crypto

Large-scale quantum computers could exist in our lifetimes.

Quantum computers can break today's crypto primitives!

Examples Outcome

Public-key
Modes of operation

RSA, DH, ECDH Broken (Shor)
GCM, CBC-MAC Broken* (Simon)

2/40

Quantum Computing and Crypto

Large-scale quantum computers could exist in our lifetimes.

Quantum computers can break today's crypto primitives!

Examples Outcome
Public-key | RSA, DH, ECDH Broken (Shor)
Modes of operation | GCM, CBC-MAC Broken* (Simon)
Block ciphers | AES, DES Attacks improve (Grover)

2/40

Quantum Computing and Crypto

Large-scale quantum computers could exist in our lifetimes.

Quantum computers can break today's crypto primitives!

Examples Outcome
Public-key | RSA, DH, ECDH Broken (Shor)
Modes of operation | GCM, CBC-MAC Broken* (Simon)
Block ciphers | AES, DES Attacks improve (Grover)
Hash functions | SHA2 Attacks improve* (Grover)

2/40

Quantum Computing and Crypto

Large-scale quantum computers could exist in our lifetimes.

Quantum computers can break today's crypto primitives!

Examples Outcome
Public-key | RSA, DH, ECDH Broken (Shor)
Modes of operation | GCM, CBC-MAC Broken* (Simon)
Block ciphers | AES, DES Attacks improve (Grover)
Hash functions | SHA2 Attacks improve* (Grover)

Password hashing

PBKDF2, scrypt

Broken* (Grover)

2/40

Quantum Computing and Crypto

Large-scale quantum computers could exist in our lifetimes.

Quantum computers can break today's crypto primitives!

Examples Outcome
Public-key | RSA, DH, ECDH Broken (Shor)
Modes of operation | GCM, CBC-MAC Broken* (Simon)
Block ciphers | AES, DES Attacks improve (Grover)
Hash functions | SHA2 Attacks improve* (Grover)

Password hashing

PBKDF2, scrypt

Broken* (Grover)

= To design good post-quantum cryptosystems, we need to

understand post-quantum cryptanalysis.

2/40

Quantum Computing and Crypto

Large-scale quantum computers could exist in our lifetimes.
Quantum computers can break today’s crypto primitives!
Examples Outcome

Public-key | RSA, DH, ECDH Broken (Shor)
Modes of operation | GCM, CBC-MAC Broken* (Simon)

Block ciphers | AES, DES Attacks improve (Grover)
Hash functions | SHA2 Attacks improve* (Grover)
Password hashing | PBKDF2, scrypt ~ Broken* (Grover)

= To design good post-uantum cryptosystems, we need to
understand post-quantum cryptanalysis.

2/40

Quantum Computing and Crypto

Large-scale quantum computers could exist in our lifetimes.

Quantum computers can break today's crypto primitives!

Examples Outcome
Public-key | RSA, DH, ECDH Broken (Shor)
Modes of operation | GCM, CBC-MAC Broken* (Simog
Block ciphers | AES, DES Attacks impro
Hash functions | SHA2 Attacks improve
Password hashing | PBKDF2, scrypt ~ Broken* (Grover)

You heard it
here first!

= To design good post-quantum cryptosystems, we need to
understand post-quantum cryptanalysis.

2/40

Quantum Computing and Crypto

Large-scale quantum computers could exist in our lifetimes.

Quantum computers can break today's crypto primitives!

Examples Outcome
Public-key | RSA, DH, ECDH Broken (Shor)
Modes of operation | GCM, CBC-MAC Broken* (Simon)
Block ciphers | AES, DES Attacks improve (Grover)
Hash functions | SHA2 Attacks improve* (Grover)

Password hashing

PBKDF2, scrypt

Broken* (Grover)

= To design good post-quantum cryptosystems, we need to

understand post-quantum cryptanalysis.

2/40

Overview

Motivation

Background
Analogy: Probabilistic Computation
Quantum Computation
Useful Tools

Grover's Algorithm
Applications

Conclusion

Warm up: Probabilistic Computation

(Following the treatment of Arora and Barak.)

By analogy to probabilistic computation. ..

4/40

Warm up: Probabilistic Computation

(Following the treatment of Arora and Barak.)

By analogy to probabilistic computation. ..

An example computation.

1. Initialize a two-bit
register with input.

2. Swap the two bits with
probability 1/2.
3. Output the register state.

4/40

Warm up: Probabilistic Computation

(Following the treatment of Arora and Barak.)

By analogy to probabilistic computation. ..

Zo

An example computation.
RSwap

Measure

1. Initialize a two-bit
register with input.

2. Swap the two bits with
probability 1/2.

3. Output the register state.

z1

4/40

Warm up: Probabilistic Computation

(Following the treatment of Arora and Barak.)

By analogy to probabilistic computation. ..

An example computation. To s
- . RSwap © ——
1. Initialize a two-bit o 2
register with input.
2. Swap the two bits with
probability 1/2. Input '+ Output
3. Output the register state. 00 00
01 01 or 10
10 10 or 01
11 11

4/40

Warm up: State of Probabilistic Machine

» We can describe the distribution over
register states (00, 01, 10, 11) with a
vector in R%.

5/40

Warm up: State of Probabilistic Machine

» We can describe the distribution over
register states (00, 01, 10, 11) with a
vector in R%.

» Reading the contents of the register
gives a sample from this distribution.

5/40

Warm up: State of Probabilistic Machine

» We can describe the distribution over

register states (00, 01, 10, 11) with a agp\ < Prob. of “00”

vector in R%. R* 5 a1 < Prob. of “01”

» Reading the contents of the register aig | ¢ Prob. of "10”
gives a sample from this distribution. @11/ < Prob. of "11
5/40

Warm up: State of Probabilistic Machine

» We can describe the distribution over

register states (00, 01, 10, 11) with a agp\ < Prob. of “00”
vector in R%. R* 5 a1 < Prob. of “01”
» Reading the contents of the register aig | ¢ Prob. of "10”

gives a sample from this distribution. @11/ < Prob. of "11"

Every possible state is a linear combination of basis states:

|00) = |01) = |10) = , |11) =

OO\.OI—l
OCiHO
O = o O
= o O O

N.B. [0)]1) = |01).
5/40

Warm up: State of Probabilistic Machine

» We can describe the distribution over

register states (00, 01, 10, 11) with a apo\ < Prob. of “00”

vector in R%. R* 5 a1 < Prob. of “01”
» Reading the contents of the register a9 | < Prob. of 10

gives a sample from this distribution. @11/ < Prob. of "11

incar combination of basis states:

Dirac’s very useful
“ket” notation

, |10) = , |11) =

O = o O
= o O O

N.B. [0)]1) = |01).
5/40
S

Warm up: State of Probabilistic Machine

» We can describe the distribution over

register states (00, 01, 10, 11) with a agp\ < Prob. of “00”
vector in R%. R* 5 a1 < Prob. of “01”
» Reading the contents of the register aig | ¢ Prob. of "10”

gives a sample from this distribution. @11/ < Prob. of "11"

Every possible state is a linear combination of basis states:

|00) = |01) = |10) = , |11) =

OO\.OI—l
OCiHO
O = o O
= o O O

N.B. [0)]1) = |01).
5/40

Warm up: Probabilistic Operations

We can use stochastic matrix to describe the action of the swap
gate on the register state.

6/40

Warm up: Probabilistic Operations

We can use stochastic matrix to describe the action of the swap
gate on the register state.

0 0
1/2 1/2
1/2 1/2
0 0

o O o
o O O

6/40

Warm up: Probabilistic Operations

We can use stochastic matrix to describe the action of the swap
gate on the register state.

0 0
1/2 1/2
1/2 1/2
0 0

o O o
o O O

5100} - [00) S10) o £ ((01) +[10))

SI01) o £(01) +110) S|11) s [11)

6/40

Warm up: Probabilistic Operations

We can use stochastic matrix to describe the action of the swap
gate on the register state.

0 0
1/2 1/2
1/2 1/2
0 0

o O o
o O O

5100} - [00) S10) o £ ((01) +[10))

SI01) o £(01) +110) S|11) s [11)

= Computation is just a matrix-vector product.

6/40

Probabilistic Computation

Register state: a vector in R2".

7/40

Probabilistic Computation

Register state: a vector in R2".

Probabilistic Computation

1. Initialize the register to |z), on input = € {0,1}".

7/40

Probabilistic Computation

Register state: a vector in R2".

Probabilistic Computation

1. Initialize the register to |z), on input = € {0,1}".

2. Run the computation by computing a matrix-vector product
Fr .- F3FyFy|x) (i.e., apply the circuit to the register).

7/40

Probabilistic Computation

Register state: a vector in R2".

Probabilistic Computation

1. Initialize the register to |z), on input = € {0,1}".

2. Run the computation by computing a matrix-vector product
Fr .- F3FyFy|x) (i.e., apply the circuit to the register).

3. Measure the register.

7/40

Probabilistic Computation

Register state: a vector in R2".

Probabilistic Computation

1. Initialize the register to |z), on input = € {0,1}".

2. Run the computation by computing a matrix-vector product
Fr .- F3FyFy|x) (i.e., apply the circuit to the register).

3. Measure the register.

If the output of the computation is }_, ayly), we will measure y with
probability c,.

7/40

Probabilistic Computation

Register state: a vector in R2".

Probabilistic Computation

1. Initialize the register to |z), on input = € {0,1}".

2. Run the computation by computing a matrix-vector product
Fr .- F3FyFy|x) (i.e., apply the circuit to the register).

3. Measure the register.

If the output of the computation is }_, ayly), we will measure y with
probability c,.

We require that Fjs:

7/40

Probabilistic Computation

Register state: a vector in R2".

Probabilistic Computation

1. Initialize the register to |z), on input = € {0,1}".

2. Run the computation by computing a matrix-vector product
Fr .- F3FyFy|x) (i.e., apply the circuit to the register).

3. Measure the register.

If the output of the computation is }_, ayly), we will measure y with
probability c,.

We require that Fjs:

> come from a fixed set of universal gates (AND, OR, etc.),

7/40

Probabilistic Computation

Register state: a vector in R2".

Probabilistic Computation

1. Initialize the register to |z), on input = € {0,1}".

2. Run the computation by computing a matrix-vector product
Fr .- F3FyFy|x) (i.e., apply the circuit to the register).

3. Measure the register.

If the output of the computation is }_, ayly), we will measure y with
probability c,.

We require that Fjs:
> come from a fixed set of universal gates (AND, OR, etc.),

» preserve the L norm (i.e., are stochastic matrices).

7/40

Probabilistic Computation

Register state: a vector in R2".

Probabilistic Computation

1. Initialize the register to |z), on input = € {0,1}".

2. Run the computation by computing a matrix-vector product
Fr .- F3FyFy|x) (i.e., apply the circuit to the register).

3. Measure the register.

If the output of the computation is }_, ayly), we will measure y with
probability c,.

We require that Fis: Probabilities sum
» come from a fixed set of universal gates (AND to one.

» preserve the L norm (i.e., are stochastic matrices).

7/40

Probabilistic Computation

Register state: a vector in R2".

Probabilistic Computation

1. Initialize the register to |z), on input = € {0,1}".

2. Run the computation by computing a matrix-vector product
Fr .- F3FyFy|x) (i.e., apply the circuit to the register).

3. Measure the register.

If the output of the computation is }_, ayly), we will measure y with
probability c,.

We require that Fjs:
> come from a fixed set of universal gates (AND, OR, etc.),

» preserve the L norm (i.e., are stochastic matrices).

7/40

Quantum Computation

Register state: a vector in C2". (A “superposition”)

Quantum Computation

1. Initialize the register to |z), on input = € {0,1}".

2. Run the computation by computing a matrix-vector product
Fr--- F3FyFy|x) (i.e., apply the circuit to the register).

3. Measure the register.

If the output of the computation is }_, ayly), we will measure y with
probability |ay|?, where a, is an “amplitude.”

We require that the F;s:
> come from a fixed set of universal gates (H, T, etc.),

> preserve the Ly norm (i.e., are unitary matrices).

8/40

Quantum Computation

Register state: a vector in C2". (A “superposition”)

Quantum Computation

1. Initialize the register to |z), on input = € {0,1}".

2. Run the computation by computing a matrix-vector product
Fr--- F3FyFy|x) (i.e., apply the circuit to the register).

3. Measure the register.

If the output of the computation is }_, ayly), we will measure y with
probability |ay|?, where a, is an “amplitude.”

We require that the F;s:

Probabilities sum

> come from a fixed set of universal gates (to one.

> preserve the Ly norm (i.e., are unitary matrices).

8/40

Example: Quantum Circuit

o

I

L2

I3

Fy

Measure

9/40

Observations about QC

10/40

Observations about QC

1. Gates must represent unitary transformations (UUT =),
so all computation must be reversible.

10/40

Observations about QC

1. Gates must represent unitary transformations (UUT =),
so all computation must be reversible.

2. Amplitudes can be negative, unlike probabilities.
— This is the source of QC's apparent power.

10/40

Useful Tool: Hadamard Gate

The Hadamard gate H is the quantum analogue of a classical

bit-flip:
1 (1 1
1= (1 —1>'

11/40

Useful Tool: Hadamard Gate

The Hadamard gate H is the quantum analogue of a classical

bit-flip:
1 (1 1
1= (1 —1>'

11/40

Useful Tool: Hadamard Gate

The Hadamard gate H is the quantum analogue of a classical

bit-flip:
1 (1 1
1= (1 —1>'

The operator H®™ applies H to each of n qubits.

11/40

Useful Tool: Quantum Queries

Fact (Lecerf 1963, Bennett 1973)

If f:{0,1}" — {0,1} is computable with a T (n)-size classical
circuit, then there is a size-O(T'(n)) quantum circuit that maps:

Z)y) = |3y ® f(2)),

possibly using O(T'(n)) extra “work” bits.

12/40

Useful Tool: Quantum Queries

Fact (Lecerf 1963, Bennett 1973)

If f:{0,1}" — {0,1} is computable with a T (n)-size classical
circuit, then there is a size-O(T'(n)) quantum circuit that maps:

Z)y) = |3y ® f(2)),

possibly using O(T'(n)) extra “work” bits.

Can make quantum queries
to a classical function!

12/40

Useful Tool: Quantum Queries

Fact (Lecerf 1963, Bennett 1973)

If f:{0,1}" — {0,1} is computable with a T (n)-size classical
circuit, then there is a size-O(T'(n)) quantum circuit that maps:

Z)y) = |3y ® f(2)),

possibly using O(T'(n)) extra “work” bits.

There is also a quantum circuit ()5 of similar size that takes:

@) = (1)),

12/40

Useful Tool: Quantum Queries

Fact (Lecerf 1963, Bennett 1973)

If f:{0,1}" — {0,1} is computable with a T (n)-size classical
circuit, then there is a size-O(T'(n)) quantum circuit that maps:

Z)y) = |3y ® f(2)),

possibly using O(T'(n)) extra “work” bits.

There is also a quantum circuit ()5 of similar size that takes:
) = (1)),

This essentially changes the sign of “good” xs in a superposition.

12/40

Overview

Motivation
Background

Grover's Algorithm
Unstructured Search
The Algorithm
Lower Bound

Applications

Conclusion

Definition (Unstructured Search Problem)

Given oracle access to a function f: [N] — {0,1}, find a value
x € [N] such that f(z) = 1.

14/40

Definition (Unstructured Search Problem)

Given oracle access to a function f: [N] — {0,1}, find a value
x € [N] such that f(z) = 1.

Many cool applications discussed in a moment.

14/40

Definition (Unstructured Search Problem)

Given oracle access to a function f: [N] — {0,1}, find a value
x € [N] such that f(z) = 1.

Many cool applications discussed in a moment.

A few interesting variants:

14/40

Definition (Unstructured Search Problem)

Given oracle access to a function f: [N] — {0,1}, find a value
x € [N] such that f(z) = 1.

Many cool applications discussed in a moment.

A few interesting variants:
Unique solution,

14/40

Definition (Unstructured Search Problem)

Given oracle access to a function f: [N] — {0,1}, find a value
x € [N] such that f(z) = 1.

Many cool applications discussed in a moment.

A few interesting variants:
Unique solution, Exactly s solutions,

14/40

Definition (Unstructured Search Problem)

Given oracle access to a function f : [N] — {0,1}, find a value
x € [N] such that f(z) = 1.

Many cool applications discussed in a moment.

A few interesting variants:
Unique solution, Exactly s solutions, Unknown # of solutions.

14/40

Definition (Unstructured Search Problem)

Given oracle access to a function f : [N] — {0,1}, find a value
x € [N] such that f(z) = 1.

Many cool applications discussed in a moment.

A few interesting variants:
Unique solution, Exactly s solutions, Unknown # of solutions.

A classical algorithm for unstructured search that succeeds with
constant probability must make Q(N) queries.

14/40

Theorem (Grover 1996)

15/40

Theorem (Grover 1996)

There is a quantum algorithm for unstructured
search that makes O(v/N) quantum queries and
succeeds with probability at least 2/3.

15/40

Grover's Algorithm

Let f:{0,1}" — {0,1} and let N = 2",

16/40

Grover's Algorithm

Let f:{0,1}" — {0,1} and let N = 2".
» Oracle: operator Qs that maps |z) > (—1)(®)|z).
» We can define an operator () that inverts the sign of |0™).

» H®" is the quantum n-bit flip operator.

16/40

Grover's Algorithm

Let f:{0,1}" — {0,1} and let N = 2".
» Oracle: operator Qs that maps |z) > (—1)(®)|z).
» We can define an operator () that inverts the sign of |0™).

» H®" is the quantum n-bit flip operator.

The Algorithm.

1. Initialize an n-bit register to the state H®"|0").
2. Apply the following operator O(v/N) times:

G = —H®"QuH®"Q;.

3. Measure the state of the register and output it.

16/40

Analysis of Grover's Algorithm

(Following expositions of Watrous and Jozsa)

Define:
A={x| f(x) =1} ("awesome strings") with a = |A|, and

17/40

Analysis of Grover's Algorithm

(Following expositions of Watrous and Jozsa)
Define:
1} (“awesome strings") with a = |A|, and
B = {z | f(z) = 0} ("bad strings"), with b = |B|.

17/40

Analysis of Grover's Algorithm

(Following expositions of Watrous and Jozsa)
Define:
1} (“awesome strings") with a = |A|, and
B = {z | f(z) = 0} ("bad strings"), with b = |B|.

Define:
|A) = \/aZzGA |z), and
1B) = L ¥,ep o).

17/40

Analysis of Grover's Algorithm

(Following expositions of Watrous and Jozsa)
Define:
1} (“awesome strings") with a = |A|, and
B = {z | f(z) = 0} ("bad strings"), with b = |B|.

Define: Orthogonal unit
4) = 5 Zreale) vectors

17/40

Analysis of Grover's Algorithm

(Following expositions of Watrous and Jozsa)
Define:
1} (“awesome strings") with a = |A|, and
B = {z | f(z) = 0} ("bad strings"), with b = |B|.

Define:
|A) = \/aZzGA |z), and
1B) = L ¥,ep o).

17/40

Analysis of Grover's Algorithm

(Following expositions of Watrous and Jozsa)
Define:
1} (“awesome strings") with a = |A|, and
B = {z | f(z) = 0} ("bad strings"), with b = |B|.

Define:
4) = s Seealo), and
B)= L ¥,eplo).

After initialization, the register is in the uniform superposition over
strings:

HE"|0") = |h) = \FZ\x \fm \fua

Awesome

17/40

Analysis of Grover's Algorithm

G = _H®nQOH®an

Analysis of Grover's Algorithm

G = “’121-6971(;?()121-6971(;2.f

1
18/40
e

Analysis of Grover's Algorithm

G = “’121-6971(;?()121-6971(;2.f

. |7)
Initial _

|B)

1
18/40
e

Analysis of Grover's Algorithm

G = ___1;1’6971(;?0'151’697z(;?‘f

. |7)
Initial _

|B)

1
18/40
e

Analysis of Grover's Algorithm

G = ___1;1’6971(;?0'151’697z(;?‘f

18/40

Analysis of Grover's Algorithm

G = —HE"QuH®"Q;

18/40

Analysis of Grover's Algorithm

G = —H®"QuH®"Q;

Claim: H®"QoH®" reflects
| 4) over plane orthogonal to |h).

18/40

Analysis of Grover's Algorithm

G = “’121-6971(;?()121-6971(;2.f

Claim: H®"QoH®" reflects
| 4) over plane orthogonal to |h).

\
18/40
e

Analysis of Grover's Algorithm

G = __1}16©7162()f16§7z621~

1
18/40
e

Analysis of Grover's Algorithm

G = __1}16©7162()f16§7z621~

1
18/40
e

Analysis of Grover's Algorithm

G = “’121-6971(;?()121-6971(;2.f

1
19/40
e

Analysis of Grover's Algorithm

G = “’121-6971(;?()121-6971(;2.f

1
19/40
e

Analysis of Grover's Algorithm

G = “’121-6971(;?()121-6971(;2.f

1
19/40
e

Analysis of Grover's Algorithm

G = “’121-6971(;?()121-6971(;2.f

1
19/40
e

Analysis of Grover's Algorithm

G = “’121-6971(;?()121-6971(;2.f

1
19/40
e

Analysis of Grover's Algorithm

G = “’121-6971(;?()121-6971(;2.f

1
19/40
e

Analysis of Grover's Algorithm

G = “’121-6971(;?()121-6971(;2.f

1
19/40
e

Analysis of Grover's Algorithm

G = “’121-6971(;?()121-6971(;2.f

‘ And so on. ..

1
19/40
e

Analysis of Grover's Algorithm

G = “’121-6971(;?()121-6971(;2.f

19/40

Analysis of Grover's Algorithm

1
19/40
e

Analysis of Grover's Algorithm

1
19/40
e

Analysis of Grover's Algorithm

1
19/40
e

Analysis of Grover's Algorithm

1
19/40
e

Analysis of Grover's Algorithm

19/40

Analysis of Grover's Algorithm

19/40

Analysis of Grover's Algorithm

19/40

Analysis of Grover's Algorithm

14) Where # = sin™! \/% ~ \/%
e

19/40

Analysis of Grover's Algorithm

After t Grover iterations, the angle between the register state and
|B) is ~ 20t. We want the bad state | B) and the register state to
be orthogonal:

T
20t = —.
2

20/40

Analysis of Grover's Algorithm

After t Grover iterations, the angle between the register state and
|B) is ~ 20t. We want the bad state |B) and the register state to
be orthogonal:
0
20t = —.
2

Num. Solutions Iterations

1 T.VN
m N
a Z'\/;
Unknown t«r{l,...,V/N}

20/40

Analysis of Grover's Algorithm

After t Grover iterations, the angle between the register state and
|B) is ~ 20t. We want the bad state |B) and the register state to
be orthogonal:

T
20t = —.
2

Num. Solutions Iterations

1 T.VN
m N
a Z'\/;
Unknown t«r{l,...,V/N}

One query per iteration = O(v/N) queries.

20/40

Lower Bound

Definition (Decision Grover Problem)

Given oracle access to f : [N] — {0,1}, decide whether there exists
an x such that f(z) = 1 with probability better than 2/3.

21/40

Lower Bound

Definition (Decision Grover Problem)

Given oracle access to f : [N] — {0,1}, decide whether there exists
an x such that f(z) = 1 with probability better than 2/3.

Theorem (Bennet, Bernstein, Brassard, Vazirani 1997)

For every quantum algorithm that makes o(v/N) queries to f, there

exists an f for which the algorithm fails to solve the Decision Grover
Problem.

21/40

Thm. For every quantum algorithm that makes o(v/N) queries to
f, there exists an f for which the algorithm fails to solve the DGP.

22/40

Thm. For every quantum algorithm that makes o(v/N) queries to
f, there exists an f for which the algorithm fails to solve the DGP.

Proof Idea. Fix a T-query quantum algorithm:

QUrQy---QrUsQUxQsUL|0™)

22/40

Thm. For every quantum algorithm that makes o(v/N) queries to
f, there exists an f for which the algorithm fails to solve the DGP.

Proof Idea. Fix a T-query quantum algorithm:

QUrQy---QrUsQUxQsUL|0™)

If fis zero everywhere, Q; = I.

22/40

Thm. For every quantum algorithm that makes o(v/N) queries to
f, there exists an f for which the algorithm fails to solve the DGP.

Proof Idea. Fix a T-query quantum algorithm:
QrUrQy -+ QUsQrU2Q U1 [0™)

If fis zero everywhere, Q; = I.

Interpolate between the non-zero case and the all-zero case. . .

22/40

Thm. For every quantum algorithm that makes o(v/N) queries to
f, there exists an f for which the algorithm fails to solve the DGP.

Proof Idea. Fix a T-query quantum algorithm:
QrUrQy -+ QUsQrU2Q U1 [0™)

If fis zero everywhere, Q; = I.

Interpolate between the non-zero case and the all-zero case. . .

67) = QUrQ; -+ QUsQ U QU1 |0™)

22/40

Thm. For every quantum algorithm that makes o(v/N) queries to
f, there exists an f for which the algorithm fails to solve the DGP.

Proof Idea. Fix a T-query quantum algorithm:
QrUrQy -+ QUsQrU2Q U1 [0™)

If fis zero everywhere, Q; = I.

Interpolate between the non-zero case and the all-zero case. . .

67) = QUrQ; -+ QUsQ U QU1 |0™)
QUrQy---QUsQ U UL|0™)

22/40

Thm. For every quantum algorithm that makes o(v/N) queries to
f, there exists an f for which the algorithm fails to solve the DGP.

Proof Idea. Fix a T-query quantum algorithm:

QsUrQy--- QrUsQUsQ U [07)
If fis zero everywhere, Q; = I.

Interpolate between the non-zero case and the all-zero case. . .

67) = QUrQ; -+ QUsQ U QU1 |0™)
QUrQy---QUsQ U UL|0™)
Q;UrQy---QUsUUL|0")

22/40

Thm. For every quantum algorithm that makes o(v/N) queries to
f, there exists an f for which the algorithm fails to solve the DGP.

Proof Idea. Fix a T-query quantum algorithm:

QUrQy---QrUsQUxQsUL|0™)

If fis zero everywhere, Q; = I.

Interpolate between the non-zero case and the all-zero case. . .

6”) = Q;UrQy --
QrUrQy -
QrUrQy -
QrUrQy -

‘QrUsQrUxQrUp [07)
-QrUsQ Uy Ur[07)
-QUsUU1[0™)
-UsUUL|0™)

22/40

Thm. For every quantum algorithm that makes o(v/N) queries to
f, there exists an f for which the algorithm fails to solve the DGP.

Proof Idea. Fix a T-query quantum algorithm:

QUrQy---QrUsQUxQsUL|0™)

If fis zero everywhere, Q; = I.

Interpolate between the non-zero case and the all-zero case. . .

6”) = Q;UrQy --
QrUrQy -
QrUrQy -
QrUrQy -

‘QrUsQrUxQrUp [07)
-QrUsQ Uy Ur[07)
-QUsUU1[0™)
-UsUUL|0™)

22/40

Thm. For every quantum algorithm that makes o(v/N) queries to
f, there exists an f for which the algorithm fails to solve the DGP.

Proof Idea. Fix a T-query quantum algorithm:

QUrQy---QrUsQUxQsUL|0™)

If fis zero everywhere, Q; = I.

Interpolate between the non-zero case and the all-zero case. . .

6”) = Q;UrQy --
QrUrQy -
QrUrQy -
QrUrQy -

‘QrUsQrUxQrUp [07)
-QrUsQ Uy Ur[07)
-QUsUU1[0™)
-UsUUL|0™)

|¢) = Up--- UsUaUp |0™)

22/40

Proof Idea (cont’d).

Z Qg t|z) = state before t-th query
xT

" = the “target” value

23/40

Proof Idea (cont’d).

Z Qg t|z) = state before t-th query
xT

" = the “target” value

» With each query, the Euclidean distance between the two
states can grow by at most 2|« ¢|.

23/40

Proof Idea (cont’d).

Z Qg t|z) = state before t-th query
X

" = the “target” value

» With each query, the Euclidean distance between the two
states can grow by at most 2|« ¢|.

» To distinguish, the distance after T queries needs to be at least
a constant €, s0: € < 230 g 4.

23/40

Proof Idea (cont’d).

Z Qg t|z) = state before t-th query
X

" = the “target” value

» With each query, the Euclidean distance between the two
states can grow by at most 2|« ¢|.

» To distinguish, the distance after T queries needs to be at least
a constant €, s0: € < 230 g 4.

» To complete the proof, sum over all N possible z*s:

N

3 a2 < 2TVN.

r*=1

23/40

Proof Idea (cont’d).

Z Qg t|z) = state before t-th query
X

" = the “target” value

» With each query, the Euclidean distance between the two
states can grow by at most 2|« ¢|.

» To distinguish, the distance after T queries needs to be at least
a constant €, s0: € < 230 g 4.

» To complete the proof, sum over all N possible z*s:

T N T N
eN <233 Joueal < STVNL DT Jage 2 < 2TVN.
t=1a*=1 t=1 z*=1

= £VYN<LT

23/40

Overview

Motivation
Background
Grover's Algorithm

Applications
Breaking Block Ciphers
Collision Finding
Password Cracking

Conclusion

Breaking Block Ciphers

For this talk, a block cipher is an efficient deterministic function:

E:Kx{0,1}" — {0,1}".

25/40

Breaking Block Ciphers

For this talk, a block cipher is an efficient deterministic function:

E:Kx{0,1}" — {0,1}".

A necessary (not sufficient) security property is that, for k &K, an
adversary given

E(k,"0"), E(k,"1"), E(k,"2")

cannot recover k faster than a brute-force search of the key-space.

25/40

Breaking Block Ciphers

For this talk, a block cipher is an efficient deterministic function:

E:Kx{0,1}" — {0,1}".

A necessary (not sufficient) security property is that, for k &K, an
adversary given

E(k,“0"), E(k, "1"), E(k,"2")
cannot recover k faster than a brute-force search of the key-space.

Viewing E(-,-) as an oracle, an adversary making ¢ queries should
succeed with probability at most ~ ¢/|K]|.

25/40

Breaking Block Ciphers

Grover search recovers the key in time O(+/|K]).

26/40

Breaking Block Ciphers

Grover search recovers the key in time O(+/|K]).

Attack Using Grover

1. Attacker receives challenge ¢ = (co, c1, ¢2).
2. Define a function f.: K — {0,1} as:

fe(k) & (E(k, “0"), E(k,“1"), E(k,“2")) = (co,c1,¢2) }.

3. Run Grover's algorithm on f.

4. In O(4/|K|) iterations, Grover returns k w.h.p.

26/40

Breaking Block Ciphers

Grover search recovers the key in time O(+/|K]).

Attack Using Grover

1. Attacker receives challenge ¢ = (co, c1, ¢2).
2. Define a function f.: K — {0,1} as:

fe(k) & (E(k, “0"), E(k,“1"), E(k,“2")) = (co,c1,¢2) }.

3. Run Grover's algorithm on f.

4. In O(4/|K|) iterations, Grover returns k w.h.p.

Attacking AES-128

26/40

Breaking Block Ciphers

Grover search recovers the key in time O(+/|K]).

Attack Using Grover

1. Attacker receives challenge ¢ = (co, c1, ¢2).
2. Define a function f.: K — {0,1} as:

fe(k) E {(E(k,"0"), B(k, “1"), E(k, "2")) = (co, 1, ¢2)}.
3. Run Grover's algorithm on f.

4. In O(4/|K|) iterations, Grover returns k w.h.p.

Attacking AES-128

Special-purpose classical attack: 21261

Bogdanov et al. 2011)

26/40

Breaking Block Ciphers

Grover search recovers the key in time O(+/|K]).

Attack Using Grover

1. Attacker receives challenge ¢ = (co, c1, ¢2).
2. Define a function f.: K — {0,1} as:

felk) E{(E(k,"0"), E(k,“1"), E(k, “2")) = (co, ¢1, 2) }-
3. Run Grover's algorithm on f.

4. In O(4/|K|) iterations, Grover returns k w.h.p.

Attacking AES-128
Special-purpose classical attack:
Generic quantum attack: 264 111

2126'1 (Bogdanov et al. 2011)

26/40

Hash Collisions

Let H be a random function.

27/40

Hash Collisions

Let H be a random function.

Problem: Given oracle access to H : [2N] — [N], find distinct
elements x and 2’ such that H(x) = H(z2'). }

27/40

Hash Collisions

Let H be a random function.

Problem: Given oracle access to H : [2N] — [N], find distinct
elements x and 2’ such that H(x) = H(z2'). }

To succeed with constant probability (by the Birthday Bound), a
classical algorithm requires O(v/ N) queries.
[Compute H(0), H(1), H(2),... until you find a collision.]

27/40

Hash Collisions

Let H be a random function.

Problem: Given oracle access to H : [2N] — [N], find distinct
elements x and 2’ such that H(x) = H(z2'). }

To succeed with constant probability (by the Birthday Bound), a
classical algorithm requires O(v/ N) queries.
[Compute H(0), H(1), H(2),... until you find a collision.]

Theorem (Brassard, Hgyer, Tapp 1997)

There is a quantum collision-finding algorithm that makes O(N'/?)
quantum queries and succeeds with constant probability.

27/40

Quantum Collision Finding

Algorithm Idea

28/40

Quantum Collision Finding

Algorithm Idea

» Build a big table of
random values and
their hashes.

28/40

Quantum Collision Finding

ro | H(ro) |
Algorithm ldea = H(ry)
» Build a big table of T2 H(rs)
random values and T3 H(rs)
their hashes. F O(NV/3)

28/40

Quantum Collision Finding

ro [H(ro) |)
Algorithm ldea = H(ry)
» Build a big table of T2 H(rs)
random values and T3 H(rs)
their hashes. . . O(NV/3)
» Use Grover search to : : F
quickly find a value
that collides with one
in the table.)

28/40

Quantum Collision Finding

ro [H(ro) |)
Algorithm ldea B H(ry)
» Build a big table of ,': T2 H(rs)
random values and ST H(rs)
their hashes. ,j" | . . O(N1/3)
» Use Grover search to = : : F
quickly find a value ‘\\:\
that collides with one Nl
in the table. y)

28/40

Quantum Collision Finding

Algorithm

1.

Sample O(N'/3) random integers r; € [2N], compute h; < H(r;),
and store each (r;, h;) in a table 7.

Define a function fr : 2N] — {0,1}:
h* < H(x)

fr(z) € { Look for a pair (r;, h;) € T with h; = h*
If such a pair exists and r; # x, return 1.

Use Grover search to find a “good” z.

Use the table to find the colliding 7, and output (x, 7).

29/40

Quantum Collision Finding

Algorithm

1.

3.
4,

Sample O(N'/3) random integers r; € [2N], compute h; < H(r;),
and store each (r;, h;) in a table 7.

Define a function fr : 2N] — {0,1}:
h* < H(x)

fr(z) € { Look for a pair (r;, h;) € T with h; = h*
If such a pair exists and r; # x, return 1.

Use Grover search to find a “good” z.

Use the table to find the colliding 7, and output (x, 7).

Analysis
» Step 1 makes O(N'/3) queries to H.

29/40

Quantum Collision Finding

Algorithm

1.

3.
4.

Sample O(N'/3) random integers r; € [2N], compute h; < H(r;),
and store each (r;, h;) in a table 7.

Define a function fr : [2N] — {0,1}:
h* < H(z)

fr(z) €< Look for a pair (r;, h;) € T with h; = h*
If such a pair exists and r; # x, return 1.

Use Grover search to find a “good” z.

Use the table to find the colliding 7, and output (x, 7).

Analysis
» Step 1 makes O(N'/3) queries to H.
» Step 3 is a Grover search over space of size 2N, with ~ N1/3

possible solutions.
20/40

Quantum Collision Finding

Algorithm

1. Sample O(N'/3) random integers r; € [2N], compute h; « H(r;),
and store each (r;, h;) in a table 7.

2. Define a function fr : [2N] — {0,1}:
h* < H(z)

fr(z) = ¢ Look for a pair (r;, h;) € T with h; = h*
If such a pair exists and r; # x, return 1.

3. Use Grover search to find a “good” x.

4. Use the table to find the colliding 7, and output (z, 7).

Analysis
» Step 1 makes O(N'/3) queries to H.
» Step 3 is a Grover search over space of size 2N, with ~ N1/3

possible solutions. = O(y/N/N1/3) = O(N'/3) queries.

29/40

Collision Finding in Practice

Is the collision-finding algorithm practical?

30/40

Collision Finding in Practice

Is the collision-finding algorithm practical?

» The query complexity is O(N1/3).

30/40

Collision Finding in Practice

Is the collision-finding algorithm practical?
» The query complexity is O(N1/3). v

30/40

Collision Finding in Practice
Is the collision-finding algorithm practical?

» The query complexity is O(N1/3). v

» What is the size of the quantum circuit?

30/40

Collision Finding in Practice

Is the collision-finding algorithm practical?
» The query complexity is O(N1/3). v

» What is the size of the quantum circuit?

0
0 o
Hen @ @ e 2l —
[
s
0
30/40

Collision Finding in Practice

Is the collision-finding algorithm practical?
» The query complexity is O(N1/3). v

» What is the size of the quantum circuit?

0
0 o
Hen @ @ e 2l —
[
s
0

Each Grover iteration encodes a table of size ©(N'/3), so the G
circuit has ©(N'1/3) gates. (1)

30/40

Collision Finding in Practice

» Mounting the attack requires a QC with ©(N'/3) qubits!
(In contrast, the cipher attack requires a QC with a few thousand qubits.)

31/40

Collision Finding in Practice

» Mounting the attack requires a QC with ©(N'/3) qubits!
(In contrast, the cipher attack requires a QC with a few thousand qubits.)

» If you have ©(N'/?) qubits, you might as well use parallel
Grover search:

31/40

Collision Finding in Practice

» Mounting the attack requires a QC with ©(N'/3) qubits!
(In contrast, the cipher attack requires a QC with a few thousand qubits.)

» If you have ©(N'/?) qubits, you might as well use parallel
Grover search:

0 Xn %
0 H G G G é’ —
0 ®n %
0 H G G ... G é’
0 @
Rn
9 H a a @ S
9 H®n @ @ @ g
0 =
31/40

Collision Finding in Practice

Parallel Grover (Grover and Rudolph 2003)

1. Pick an zo <= [N].
2. Define f: [2N] — {0,1} as:

fao(z) Z {H(z) = H(zo) and z # x¢}.

3. Divide search space into N1/ pieces.

4. Run Grover on each piece in parallel.

32/40

Collision Finding in Practice

Parallel Grover (Grover and Rudolph 2003)

1. Pick an zo <= [N].
2. Define f: [2N] — {0,1} as:

fao(z) Z {H(z) = H(zo) and z # x¢}.

3. Divide search space into N1/ pieces.

4. Run Grover on each piece in parallel.

Analysis.
Each machine searches over a space of size O(N/N'/3).

32/40

Collision Finding in Practice

Parallel Grover (Grover and Rudolph 2003)

1. Pick an zo <= [N].
2. Define f: [2N] — {0,1} as:
fao(z) Z {H(z) = H(zo) and z # x¢}.

3. Divide search space into N1/ pieces.

4. Run Grover on each piece in parallel.

Analysis.
Each machine searches over a space of size O(N/N'/3).
We expect one space to contain a colliding input.

32/40

Collision Finding in Practice

Parallel Grover (Grover and Rudolph 2003)

1. Pick an zo <= [N].
2. Define f: [2N] — {0,1} as:

foo(@) = {H(z) = H(xo) and @ # zo}.

3. Divide search space into N1/ pieces.

4. Run Grover on each piece in parallel.

Analysis.
Each machine searches over a space of size O(N/N'/3).
We expect one space to contain a colliding input.

Running time is O(VN2/3) = O(N'/3).

32/40

Collision Finding in Practice

Parallel Grover (Grover and Rudolph 2003)

1. Pick an zo <= [N].
2. Define f: [2N] — {0,1} as:

Fuo(@) £ {H(x) = H(xo) and @ # 20}.

3. Divide search space into N1/ pieces.

4. Run Grover on each piece in parallel.

Analysis.

Each machine searches over a space of size O(N/N'/3).

We expect one space to contain a colliding input.

Running time is O(V N2/3) = O(N'/3).
If you have a size-O(N'/3) classical computer, finding collisions
with the parallel rho method only takes time O(N/)!

(Van Oorschot and Wiener 1999) (Bernstein 2009))
32/40

Password Cracking

Modern OSes store passwords as H (salt, password), where:
— H is a “moderately hard” function, and
— salt is a random string.

33/40

Password Cracking

Modern OSes store passwords as H (salt, password), where:
— H is a “moderately hard” function, and
— salt is a random string.

User Password
alice cardinal650
bob Stanford!
carol CSRulez

33/40

Password Cracking

Modern OSes store passwords as H (salt, password), where:
— H is a “moderately hard” function, and
— salt is a random string.

User Password
alice cardinal650

bob Stanford! #
carol CSRulez

33/40

Password Cracking

Modern OSes store passwords as H (salt, password), where:
— H is a “moderately hard” function, and
— salt is a random string.

User Password User Salt HashedPass
alice cardinal650 alice 0x0738 0x89d7fla
bob Stanford! # bob Oxaab3 0x1704193
carol CSRulez carol 0x9c3e 0x726ebd9

33/40

Password Cracking

Modern OSes store passwords as H (salt, password), where:
— H is a “moderately hard” function, and
— salt is a random string.

User Password User Salt HashedPass
alice cardinal650 alice 0x0738 0x89d7fla
bob Stanford! # bob Oxaab3 0x1704193
carol CSRulez carol 0x9c3e 0x726ebd9

If someone steals your password file, they have to do some work
(“password cracking”) to recover the stored passwords.

33/40

Password Cracking

Problem: Given oracle access to H : [N] — [N], a dictionary of
candidate passwords

D = {password, 12345, quwerty, ...} C [N],

and a target 7, find an « € D such that H(z) = 7.

34/40

Password Cracking

Problem: Given oracle access to H : [N] — [N], a dictionary of
candidate passwords

D = {password, 12345, quwerty, ...} C [N],

and a target 7, find an « € D such that H(z) = 7.

Inverting a function
with hints.

34/40

Password Cracking

Problem: Given oracle access to H : [N] — [N], a dictionary of
candidate passwords

D = {password, 12345, quwerty, ...} C [N],

and a target 7, find an « € D such that H(z) = 7.

34/40

Password Cracking

Problem: Given oracle access to H : [N] — [N], a dictionary of
candidate passwords

D = {password, 12345, quwerty, ...} C [N],

and a target 7, find an « € D such that H(z) = 7.

Classical attack: ©(|D|) queries to H (to succeed w.p. 1/2)

34/40

Password Cracking

Problem: Given oracle access to H : [N] — [N], a dictionary of
candidate passwords

D = {password, 12345, quwerty, ...} C [N],

and a target 7, find an « € D such that H(z) = 7.

Classical attack: ©(|D|) queries to H (to succeed w.p. 1/2)
Grover search: O(+/|D|) attack.” (New?)

34/40

Password Cracking

Problem: Given oracle access to H : [N] — [N], a dictionary of
candidate passwords

D = {password, 12345, quwerty, ...} C [N],

and a target 7, find an « € D such that H(z) = 7.

Classical attack: ©(|D|) queries to H (to succeed w.p. 1/2)
Grover search: O(+/|D|) attack.”

Quantum computers essentially break
all password hashing functions.

34/40

Quantum Password Cracking

1. Define a function fp:{1,2,...,|D|} — {0,1} as:

f2(3) «f | di < "ith entry in dictionary D"
1) = -
P return 7 = H(d;)

2. Run Grover search to find a “good” i.

Search will use O(+/|D]) queries to H and D.

35/40

Quantum Password Cracking

1. Define a function fp:{1,2,...,|D|} — {0,1} as:

f2(3) «f | di < "ith entry in dictionary D"
1) = -
P return 7 = H(d;)

2. Run Grover search to find a “good” i.

Search will use O(+/|D]) queries to H and D.
» Cp = Cost of H query.
» Cp = Cost of D query.

35/40

Quantum Password Cracking

1. Define a function fp:{1,2,...,|D|} — {0,1} as:

f2(3) «f | di < "ith entry in dictionary D"
1) = -
P return 7 = H(d;)

2. Run Grover search to find a “good” i.

Search will use O(+/|D]) queries to H and D.
» Cp = Cost of H query.
» Cp = Cost of D query.

Attack cost = (# iterations) - (Cost per iteration)

35/40

Quantum Password Cracking

1. Define a function fp:{1,2,...,|D|} — {0,1} as:

f2(3) «f | di < "ith entry in dictionary D"
1) = -
P return 7 = H(d;)

2. Run Grover search to find a “good” i.

Search will use O(+/|D]) queries to H and D.
» Cp = Cost of H query.
» Cp = Cost of D query.

Attack cost = (# iterations) - (Cost per iteration)

~ \/IDI(Cx + Cp)

35/40

Quantum Password Cracking

1. Define a function fp:{1,2,...,|D|} — {0,1} as:

f2(3) «f | di < "ith entry in dictionary D"
1) = -
P return 7 = H(d;)

2. Run Grover search to find a “good” i.

Search will use O(+/|D]) queries to H and D.
» Cp = Cost of H query.
» Cp = Cost of D query.

Attack cost = (# iterations) - (Cost per iteration)

~1/|D|(Ca +Cp) (Could be ~ |D|log N)

35/40

Quantum Password Cracking

1. Define a function fp:{1,2,...,|D|} — {0,1} as:

f2(3) «f | di < "ith entry in dictionary D"
1) = -
P return 7 = H(d;)

2. Run Grover search to find a “good” i.

Search will use O(+/|D]) queries to H and D.
» Cp = Cost of H query.
» Cp = Cost of D query.
Attack cost = (# iterations) - (Cost per iteration)

~1/|D|(Ca +Cp) (Could be ~ |D|log N)
~ ‘D‘3/2+\/5~CH

35/40

Quantum Password Cracking

1. Define a function fp:{1,2,...,|D|} — {0,1} as:

f2(3) «f | di < "ith entry in dictionary D"
1) = -
P return 7 = H(d;)

2. Run Grover search to find a “good” i.

Search will use O(+/|D]) queries to H and D.
» Cp = Cost of H query.
» Cp = Cost of D query.

Attack cost = (# iterations) - (Cost per iteration)
~1/|D|(Ca +Cp) (Could be ~ |D|log N)
~ |[D]*? + VD Cy

This often beats the classical |D| - Cy attack!
35/40

Quantum Password Cracking

If we can represent the dictionary D with a small circuit, then the
quantum attack is devastating:

|D| - Ch decreases to ~/|D|-Cy.

36/40

Quantum Password Cracking

If we can represent the dictionary D with a small circuit, then the
quantum attack is devastating:

|D| - Ch decreases to ~/|D|-Cy.

Using amplitude amplification (Brassard, Hgyer, Mosca, Tapp
2002), we can generalize the attack from

password dictionaries to password distributions.

36/40

The End of Password Hashing?

Say that an attacker's budget allows for 224 hash computations. . .

37/40

The End of Password Hashing?

Say that an attacker's budget allows for 224 hash computations. . .

Type Len Classical Quantum
Lower-case alpha 6 char 278 214

8 char 237 219

10 char 247 224
Alphanumeric 6 char 236 218

8 char 247 223

10 char 20 230
Printable ASCII 6 char 2% 220

8 char 22 226

10 char 266 233

37/40

Overview

Motivation
Background
Grover's Algorithm
Applications

Conclusion

Conclusions

Quantum computers can solve black-box search problems faster
than classical computers can.

39/40

Conclusions
Quantum computers can solve black-box search problems faster
than classical computers can.

Future Directions

39/40

Conclusions
Quantum computers can solve black-box search problems faster
than classical computers can.

Future Directions

1. Find quantum collision-finding algorithms that beat the
classical ones, in terms of qubit complexity. (crover and Rudolph 2003)

39/40

Conclusions

Quantum computers can solve black-box search problems faster
than classical computers can.

Future Directions

1. Find quantum collision-finding algorithms that beat the
classical ones, in terms of qubit complexity. (crover and Rudolph 2003)

» ...or prove that none exist.

39/40

Conclusions

Quantum computers can solve black-box search problems faster
than classical computers can.

Future Directions

1. Find quantum collision-finding algorithms that beat the
classical ones, in terms of qubit complexity. (crover and Rudolph 2003)

» ...or prove that none exist.

2. Cryptanalyze proposed post-quantum cryptosystems.
Switching from RSA — LWE doesn't necessarily protect you.

39/40

Conclusions

Quantum computers can solve black-box search problems faster
than classical computers can.

Future Directions

1. Find quantum collision-finding algorithms that beat the
classical ones, in terms of qubit complexity. (crover and Rudolph 2003)

» ...or prove that none exist.

2. Cryptanalyze proposed post-quantum cryptosystems.
Switching from RSA — LWE doesn't necessarily protect you.

3. Prove time-space lower bounds for quantum algorithms in the
random-oracle model.

39/40

Conclusions

Quantum computers can solve black-box search problems faster
than classical computers can.

Future Directions

1. Find quantum collision-finding algorithms that beat the
classical ones, in terms of qubit complexity. (crover and Rudolph 2003)

» ...or prove that none exist.

2. Cryptanalyze proposed post-quantum cryptosystems.
Switching from RSA — LWE doesn't necessarily protect you.

3. Prove time-space lower bounds for quantum algorithms in the
random-oracle model.

Thank you!

39/40

References
Background

» Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern
Approach.

» Michael Nielsen and Isaac Chuang. Quantum Computation and Quantum
Information.

» John Watrous. Lecture notes: Introduction to Quantum Computing
https://cs.uwaterloo.ca/~watrous/LectureNotes.html

Grover’s Algorithm

» Lov Grover. “A Fast Quantum Mechanical Algorithm for Database Search”
(1996).
https://arxiv.org/abs/quant-ph/9605043

» Michel Boyer, Gilles Brassard, Peter Hgyer, and Alain Tapp. “Tight Bounds on
Quantum Searching” (1996).
https://arxiv.org/abs/quant-ph/9605034

» Richard Jozsa. “Searching in Grover's Algorithm” (1999).
https://arxiv.org/pdf/quant-ph/9901021
Gives the nice geometric interpretation of Grover search.

» Gilles Brassard, Peter Hgyer, Michele Mosca, and Alain Tapp. “Quantum
Amplitude Amplification and Estimation” (2000).
https://arxiv.org/abs/quant-ph/0005055

https://cs.uwaterloo.ca/~watrous/LectureNotes.html
https://arxiv.org/abs/quant-ph/9605043
https://arxiv.org/abs/quant-ph/9605034
https://arxiv.org/pdf/quant-ph/9901021
https://arxiv.org/abs/quant-ph/0005055

References
Lower Bound

» Charles H. Bennett, Ethan Bernstein, Gilles Brassard, and Umesh Vazirani
“Strengths and Weaknesses of Quantum Computing” (1997).
https://arxiv.org/abs/quant-ph/9701001

» Ronald de Wolf. Lecture notes: “Quantum Lower Bounds” (2005).
http://www.iro.umontreal.ca/~tappa/Summer’20School/montreal05.pdf

» Scott Aaronson. Lecture notes: "“6.845: Quantum Complexity Theory” (2009).
https:
//ocw.mit.edu/courses/electrical-engineering-and-computer-science/
6-845-quantum-complexity-theory-fall-2010/lecture-notes/

Collision Finding

» Gilles Brassard, Peter Hgyer, and Alain Tapp. “Quantum Algorithm for the
Collision Problem” (1997).
https://arxiv.org/abs/quant-ph/9705002

» Paul van Oorschot and Michael J. Wiener. “Parallel Collision Search with
Cryptanalytic Applications” (1999).
http://people.scs.carleton.ca/~paulv/papers/JoC97.pdf

» Lov Grover and Terry Rudolph. “How Significant are the Known Collision and
Element Distinctness Quantum Algorithms?” (2003).
http://arxiv.org/pdf/quant-ph/0306017

» Daniel J. Bernstein. “Cost Analysis of Hash Collisions: Will Quantum
Computers Make SHARCs Obsolete?” (2009).
http://cr.yp.to/hash/collisioncost-20090823.pdf

2/4
S

https://arxiv.org/abs/quant-ph/9701001
http://www.iro.umontreal.ca/~tappa/Summer%20School/montreal05.pdf
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-845-quantum-complexity-theory-fall-2010/lecture-notes/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-845-quantum-complexity-theory-fall-2010/lecture-notes/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-845-quantum-complexity-theory-fall-2010/lecture-notes/
https://arxiv.org/abs/quant-ph/9705002
http://people.scs.carleton.ca/~paulv/papers/JoC97.pdf
http://arxiv.org/pdf/quant-ph/0306017
http://cr.yp.to/hash/collisioncost-20090823.pdf

References

AES Cryptanalysis

» Andrey Bogdanov, Dmitry Khovratovich, and Christian Rechberger. “Biclique
Cryptanalysis of the Full AES” (2011). http:
//research.microsoft.com/en-us/projects/cryptanalysis/aesbc.pdf

3/4

http://research.microsoft.com/en-us/projects/cryptanalysis/aesbc.pdf
http://research.microsoft.com/en-us/projects/cryptanalysis/aesbc.pdf

Analysis of Grover's Algorithm

The operator R = H®"QoH®" reflects over the hyperplane
orthogonal to |h).

4/4

Analysis of Grover's Algorithm

The operator R = H®"QoH®" reflects over the hyperplane
orthogonal to |h).

The Qo operator flips the sign of |0™) in a superposition:

Qo = I — 2/0™)(0"|.

4/4

Analysis of Grover's Algorithm

The operator R = H®"QoH®" reflects over the hyperplane
orthogonal to |h).

The Qo operator flips the sign of |0™) in a superposition:

Qo =1 —2[0")(0"].
————

outer product

4/4

Analysis of Grover's Algorithm

The operator R = H®"QoH®" reflects over the hyperplane
orthogonal to |h).

The Qo operator flips the sign of |0™) in a superposition:

Qo = I — 2/0™)(0"|.

4/4

Analysis of Grover's Algorithm

The operator R = H®"QoH®" reflects over the hyperplane
orthogonal to |h).

The Qo operator flips the sign of |0™) in a superposition:
Qo = I — 2/0™)(0"|.
Then R = H®*"QoH®™ = I — 2|h)(h|, so R takes:

|h) — —|h) and |ht) = |ht).

4/4

Analysis of Grover's Algorithm

The operator R = H®"QoH®" reflects over the hyperplane
orthogonal to |h).
The Qo operator flips the sign of |0™) in a superposition:
Qo = I - 2/0")(0"].
Then R = H®*"QoH®™ = I — 2|h)(h|, so R takes:
|h) — —|h) and |ty — |ht).
So, for any vector |v) = alh) + B|ht), R maps:

alh) + BlT) = —alh) + BlhT).

4/4

	Motivation
	Background
	Analogy: Probabilistic Computation
	Quantum Computation
	Useful Tools

	Grover's Algorithm
	Unstructured Search
	The Algorithm
	Lower Bound

	Applications
	Breaking Block Ciphers
	Collision Finding
	Password Cracking

	Conclusion
	Appendix

