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Contributions

1. Secret-shared non-interactive proofs (SNIPs) 
– Client proves that its encoded submission is well-formed  
– We do not need the power of traditional “heavy” crypto tools 
 

2. Aggregatable encodings  
Can compute sums privately  ⟹   Can compute f(·) privately 

    …for many f’s of interest 



Related systems
• Additively homomorphic encryption  

P4P (2010), Private stream aggregation (2011), Grid aggregation (2011), 
PDDP (2012), SplitX (2013), PrivEx (2014), PrivCount (2016), 
Succinct sketches (2016), …

• Multi-party computation [GMW87], [BGW88] 
FairPlay (2004), Brickell-Shmatikov (2006), FairplayMP (2008), SEPIA (2010), 
Private matrix factorization (2013), JustGarble (2013), …

• Anonymous credentials/tokens 
VPriv (2009), PrivStats (2011), ANONIZE (2014), …

• Randomized response [W65], [DMNS06], [D06] 
RAPPOR (2014, 2016)

Prio is the first system to achieve  
exact correctness, privacy, robustness, efficiency.
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Warm-up: Computing private sums
• Every device i holds a value xi 

• We want to compute  
f(x1, …, xN) = x1 + … + xN     

without learning any users’ private value xi.

 
Example: Privately measuring traffic congestion.

xi = 1  if user i is on the Bay Bridge  
= 0 otherwise

The sum x1 + … + xN yields the number of app users 
on the Bay Bridge.
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SB SCSA

SA + SB + SC = 1 + 0 + … + 1

Servers learn the  
sum of client values 

and learn nothing else.

Private sums: 
A “straw-man” 
scheme

SA + SB + SC = 15 + -10 + …  

Learn that three phones 
are on the Bay Bridge—
don’t know which three
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Computing private sums
Exact correctness: If everyone follows the protocol, 
servers compute the sum of all xis.

Privacy: Any proper subset of the servers learns 
nothing but the sum of the xis.

Efficiency: Follows by inspection.

Robustness: ???
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F

Private sums: 
A “straw-man” 
scheme

garbage garbage garbage

Users have 
incentives to cheat

Typical defenses 
(NIZKs) are costly

A single bad client 
can undetectably 
corrupt the sum
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The servers want to ensure that their 
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…without learning x.

x = 1
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much easier than generating it!
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Servers run lightweight multi-party computation to check that  

Da + Db + Dc = 0
If so, servers accept x is valid.

Server A Server B Server C
How SNIPs work

Da Db Dc

O(1) O(1)

O(1)

[BFO12]
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[CLOS02], [DPSZ12], …



M = # of multiplication 
gates in Valid(·) circuit

Public-key ops. Communication Slow-
downClient Server C-to-S S-to-S
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at server
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at server

Commits + SNARKs Θ(M) O(1) O(1) O(1) 500x
at client

This work: SNIPs 0 0 Θ(M) O(1) 1x

[FS86], [CP92], [CS97], …

[GGPR13], [BCGTV13], …

[CLOS02], [DPSZ12], …
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(see optimizations described in paper)

• Five-server cluster in EC2

• System collects the sum 
of “N” 0/1 values 

Four variants
1. No privacy
2. No robustness (“straw man”)
3. Prio (privacy + robustness)
4. NIZK (privacy + robustness)

one server

five servers
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Known techniques: Complex statistics
If you can compute private sums, you can compute many 
other interesting aggregates using known techniques
• Average
• Variance
• Standard deviation
• Most popular (approx)
• “Heavy hitters” (approx)
• Min and max (approx)
• Quality of arbitrary regression model (R2)
• Least-squares regression
• Stochastic gradient descent   [Bonawitz et al. 2016]

[PrivStats11], [KDK11], [DFKZ13], [PrivEx14], [MDD16], …

Contribution 2: 
SNIP-friendly encodings 

for these statistics

See the paper for 
the details

Prio can’t compute all 
statistics efficiently
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Conclusions
• Wholesale collection of sensitive user data puts our 

security at risk.
• Prio is the first system for aggregation that provides:

– exact correctness,
– privacy,
– robustness, and
– efficiency.

• To do so, Prio uses SNIPs and aggregatable encodings.
• These techniques together bring private aggregation 

closer to practical.

Thank you!
Henry Corrigan-Gibbs

henrycg@cs.stanford.edu
 
https://crypto.stanford.edu/prio/





Example Encoding: Average and Variance
[PrivStats11]



Example Encoding: Average and Variance
– Each of N clients holds a value xi
– Servers want the AVG and VAR of the xis.

Each client i encodes her value x as the pair 
(x, y) = (x, x2)

Simple to check that the encoding is valid: 
Valid(x, y) = (x2 - y)  [outputs zero if valid]

[PrivStats11]



Example Encoding: Average and Variance
– Each of N clients holds a value xi
– Servers want the AVG and VAR of the xis.

Each client i encodes her value x as the pair 
(x, y) = (x, x2)

Simple to check that the encoding is valid: 
Valid(x, y) = (x2 - y)  [outputs zero if valid]

Use Prio to compute the sum of encodings ∑i (xi, yi) 

[PrivStats11]



Example Encoding: Average and Variance
– Each of N clients holds a value xi
– Servers want the AVG and VAR of the xis.

Each client i encodes her value x as the pair 
(x, y) = (x, x2)

Simple to check that the encoding is valid: 
Valid(x, y) = (x2 - y)  [outputs zero if valid]

Use Prio to compute the sum of encodings ∑i (xi, yi) 

Then recover the statistics: 
AVG(X) = (∑i xi)  /  N  
AVG(X2) = (∑i yi)  /  N = (∑i xi2)  /  N  
VAR(X) =   AVG(X2) - AVG(X)2

[PrivStats11]
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Example Encoding: Average and Variance
– Each of N clients holds a 4-bit value xi
– Servers want the AVG and VAR of the xis.

 
Each client encodes her value x = b3b2b1b0 as the tuple  

(x, y) = (x, x2,  b3, b2, b1, b0)

 
To test validity of the encoding, check that: 
 

Valid(x, y) = { (x2 - y) = 0 — y is x2  
{ x - ∑j2j bj  = 0 — b’s are the bits of x 
{ bj ·(bj –1) = 0 — b’s are 0/1 values

[PrivStats11]


